当前位置:首页 » 图片大全 » 数据集的训练集总共有多少张图片
扩展阅读
关公霸气图片手机壁纸 2025-09-04 16:48:04
图片导出电脑重启 2025-09-04 16:34:25

数据集的训练集总共有多少张图片

发布时间: 2022-08-27 10:12:33

㈠ 20000张图片的数据集要训练多久

第一步训练就需要花费2个多小时,总共也才6个小时左右,所以提高训练速度很重要。

㈡ wider数据集标签有问题吗

wider数据集标签没有问题。WIDERFACE数据集是一个人脸检测基准benchmark数据集,图片选取自数据集,图片数32203张,人脸数393703个,在大小scale位置pose遮挡occlusion等不同形式中人脸是高度变换的。

wider数据集标签的特点

WIDERFACE数据集是基于61个事件类别每个事件类别,随机选取训练百分之40验证百分之10测试百分之50,训练和测试含有边框boundingbox真值groundtruth而验证不含,检测算法在测试集上的评估方式与PASCALVOCDATADASET相同。

并且测试集的真值包围框boundingbox未发布,参赛者可通过提交预测结果predictionfiles,由WIDERFACE给出评价结果,WiderPerson数据集是比较拥挤场景的行人检测基准数据集,其图像是从多种场景中选择的不再局限于交通场景。

㈢ BP神经网络的训练集需要大样本吗一般样本个数为多少

BP神经网络的训练集需要大样本吗?一般样本个数为多少?
BP神经网络样本数有什么影响
学习神经网络这段时间,有一个疑问,BP神经网络中训练的次数指的网络的迭代次数,如果有a个样本,每个样本训练次数n,则网络一共迭代an次,在n>>a 情况下 , 网络在不停的调整权值,减小误差,跟样本数似乎关系不大。而且,a大了的话训练时间必然会变长。
换一种说法,将你的数据集看成一个固定值, 那么样本集与测试集 也可以按照某种规格确定下来如7:3 所以如何看待 样本集的多少与训练结果呢? 或者说怎么使你的网络更加稳定,更加符合你的所需 。

我尝试从之前的一个例子中看下区别

如何用70行Java代码实现深度神经网络算法

作者其实是实现了一个BP神经网络 ,不多说,看最后的例子

一个运用神经网络的例子
最后我们找个简单例子来看看神经网络神奇的效果。为了方便观察数据分布,我们选用一个二维坐标的数据,下面共有4个数据,方块代表数据的类型为1,三角代表数据的类型为0,可以看到属于方块类型的数据有(1,2)和(2,1),属于三角类型的数据有(1,1),(2,2),现在问题是需要在平面上将4个数据分成1和0两类,并以此来预测新的数据的类型。


图片描述

我们可以运用逻辑回归算法来解决上面的分类问题,但是逻辑回归得到一个线性的直线做为分界线,可以看到上面的红线无论怎么摆放,总是有一个样本被错误地划分到不同类型中,所以对于上面的数据,仅仅一条直线不能很正确地划分他们的分类,如果我们运用神经网络算法,可以得到下图的分类效果,相当于多条直线求并集来划分空间,这样准确性更高。

图片描述

简单粗暴,用作者的代码运行后 训练5000次 。根据训练结果来预测一条新数据的分类(3,1)



预测值 (3,1)的结果跟(1,2)(2,1)属于一类 属于正方形

这时如果我们去掉 2个样本,则样本输入变成如下

//设置样本数据,对应上面的4个二维坐标数据
double[][] data = new double[][]{{1,2},{2,2}};
//设置目标数据,对应4个坐标数据的分类
double[][] target = new double[][]{{1,0},{0,1}};
1
2
3
4
1
2
3
4




则(3,1)结果变成了三角形,

如果你选前两个点 你会发现直接一条中间线就可以区分 这时候的你的结果跟之前4个点时有区别 so 你得增加样本 直到这些样本按照你所想要的方式分类 ,所以样本的多少 重要性体现在,样本得能反映所有的特征值(也就是输入值) ,样本多少或者特征(本例子指点的位置特征)决定的你的网络的训练结果,!!!这是 我们反推出来的结果 。这里距离深度学习好像近了一步。

另外,这个70行代码的神经网络没有保存你训练的网络 ,所以你每次运行都是重新训练的网络。其实,在你训练过后 权值已经确定了下来,我们确定网络也就是根据权值,so只要把训练后的权值保存下来,将需要分类的数据按照这种权值带入网络,即可得到输出值,也就是一旦网络确定, 权值也就确定,一个输入对应一个固定的输出,不会再次改变!个人见解。

最后附上作者的源码,作者的文章见开头链接
下面的实现程序BpDeep.java可以直接拿去使用,

import java.util.Random;
public class BpDeep{
public double[][] layer;//神经网络各层节点
public double[][] layerErr;//神经网络各节点误差
public double[][][] layer_weight;//各层节点权重
public double[][][] layer_weight_delta;//各层节点权重动量
public double mobp;//动量系数
public double rate;//学习系数

public BpDeep(int[] layernum, double rate, double mobp){
this.mobp = mobp;
this.rate = rate;
layer = new double[layernum.length][];
layerErr = new double[layernum.length][];
layer_weight = new double[layernum.length][][];
layer_weight_delta = new double[layernum.length][][];
Random random = new Random();
for(int l=0;l<layernum.length;l++){
layer[l]=new double[layernum[l]];
layerErr[l]=new double[layernum[l]];
if(l+1<layernum.length){
layer_weight[l]=new double[layernum[l]+1][layernum[l+1]];
layer_weight_delta[l]=new double[layernum[l]+1][layernum[l+1]];
for(int j=0;j<layernum[l]+1;j++)
for(int i=0;i<layernum[l+1];i++)
layer_weight[l][j][i]=random.nextDouble();//随机初始化权重
}
}
}
//逐层向前计算输出
public double[] computeOut(double[] in){
for(int l=1;l<layer.length;l++){
for(int j=0;j<layer[l].length;j++){
double z=layer_weight[l-1][layer[l-1].length][j];
for(int i=0;i<layer[l-1].length;i++){
layer[l-1][i]=l==1?in[i]:layer[l-1][i];
z+=layer_weight[l-1][i][j]*layer[l-1][i];
}
layer[l][j]=1/(1+Math.exp(-z));
}
}
return layer[layer.length-1];
}
//逐层反向计算误差并修改权重
public void updateWeight(double[] tar){
int l=layer.length-1;
for(int j=0;j<layerErr[l].length;j++)
layerErr[l][j]=layer[l][j]*(1-layer[l][j])*(tar[j]-layer[l][j]);

while(l-->0){
for(int j=0;j<layerErr[l].length;j++){
double z = 0.0;
for(int i=0;i<layerErr[l+1].length;i++){
z=z+l>0?layerErr[l+1][i]*layer_weight[l][j][i]:0;
layer_weight_delta[l][j][i]= mobp*layer_weight_delta[l][j][i]+rate*layerErr[l+1][i]*layer[l][j];//隐含层动量调整
layer_weight[l][j][i]+=layer_weight_delta[l][j][i];//隐含层权重调整
if(j==layerErr[l].length-1){
layer_weight_delta[l][j+1][i]= mobp*layer_weight_delta[l][j+1][i]+rate*layerErr[l+1][i];//截距动量调整
layer_weight[l][j+1][i]+=layer_weight_delta[l][j+1][i];//截距权重调整
}
}
layerErr[l][j]=z*layer[l][j]*(1-layer[l][j]);//记录误差
}
}
}

public void train(double[] in, double[] tar){
double[] out = computeOut(in);
updateWeight(tar);
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
下面是这个测试程序BpDeepTest.java的源码:

import java.util.Arrays;
public class BpDeepTest{
public static void main(String[] args){
//初始化神经网络的基本配置
//第一个参数是一个整型数组,表示神经网络的层数和每层节点数,比如{3,10,10,10,10,2}表示输入层是3个节点,输出层是2个节点,中间有4层隐含层,每层10个节点
//第二个参数是学习步长,第三个参数是动量系数
BpDeep bp = new BpDeep(new int[]{2,10,2}, 0.15, 0.8);

//设置样本数据,对应上面的4个二维坐标数据
double[][] data = new double[][]{{1,2},{2,2},{1,1},{2,1}};
//设置目标数据,对应4个坐标数据的分类
double[][] target = new double[][]{{1,0},{0,1},{0,1},{1,0}};

//迭代训练5000次
for(int n=0;n<5000;n++)
for(int i=0;i<data.length;i++)
bp.train(data[i], target[i]);

//根据训练结果来检验样本数据
for(int j=0;j<data.length;j++){
double[] result = bp.computeOut(data[j]);
System.out.println(Arrays.toString(data[j])+":"+Arrays.toString(result));
}

//根据训练结果来预测一条新数据的分类
double[] x = new double[]{3,1};
double[] result = bp.computeOut(x);
System.out.println(Arrays.toString(x)+":"+Arrays.toString(result));
}
}

㈣ 怎么通俗地理解张量

对Gradle通俗的理解:
软件开发讲究代码复用,通过复用可以使工程更易维护,代码量更少..... 开发者可以通过继承,组合,函数模块等实现不同程度上的代码复用.但不知你有没有想过,软件开发也是一种工程作业,绝不仅仅是写代码,还涉及到工程的各种管理(依赖,打包,部署,发布,各种渠道的差异管理.....),你每天都在build,clean,签名,打包,发布,有没有想过这种过程,也可以像代码一样被描述出来, 也可以被复用.

㈤ 深度学习10张图片能出模型吗

不能出模型。
深度学习模型往往在大型监督型数据集上训练。所谓监督型数据集,即每条数据都有一个对应的标签。比如流行的ImageNet数据集,有一百万张人为标记的图像。一共有1000个类,每个类有1000张图像。创建这样的数据集需要花费大量的精力,同时也需要很多的时间。现在想象创建一个有1M个类的数据集。试想一下,对有100M数据帧的视频数据集的每一帧进行分类。该任务量简直不可估量。
无监督学习的目标是兼容小数据集进行训练的通用系统,即便是很少的数据。比较主流的无监督模型有:聚类学习、自动编码器、生成模型、PredNet。

㈥ 训练集是每人多少张照片

两三百张。
学习一个类大概几百张左右就够,具体取决于你的目标学习的难易性,简单的类有个二三百就差不多,较难学习的类要900及以上。
数据集图片大小不需要一致,训练效果是否有影响取决于你原始图片到模型输入图片的缩放比例倍数,如果缩放比例过大,还是有影响的。

㈦ 猫狗数据集的由来

源于kaggle。猫狗数据集来源于kaggle中Dogsvs.Cats数据集,由2000张训练图像和1000张验证集图像组成,图片均为彩色图像,大小(像素)各不相同。

㈧ 如何制作像mnist,CIFAR-10格式的数据集

MNIST 数据集
混合的国家标准和技术 (简称 MNIST) 由红外研究员,作为基准来比较不同的红外算法创建数据集。 其基本思想是如果你有你想要测试红外的算法或软件的系统,可以运行您的算法或系统针对 MNIST 的数据集和比较您的结果与其他系统以前发布成果。
数据集包含的共 70,000 图像 ; 60,000 训练图像 (用于创建红外模型) 和 10,000 测试图像 (用于评估模型的精度)。 每个 MNIST 图像是一个单一的手写的数字字符的数字化的图片。 每个图像是 28 x 28 像素大小。 每个像素值是 0,表示白色,至 255,表示黑。 中间像素值表示的灰度级。 图 2 显示了训练集的前八位的图像。 对应于每个图像的实际数字是显然对人,但确定数字是非常困难的挑战的计算机。

图 2 首八 MNIST 训练图像
奇怪的是,训练数据和测试数据均存储在两个文件中,而不是在单个文件中。 其中一个文件包含图像的像素值和,另一个包含图像的标签信息 (0 到 9)。 每个的四个文件还包含标头信息,和所有的四个文件都存储在已经使用 gzip 格式压缩的二进制格式。
注意在图 1,该演示程序使用仅 60,000 项目训练集。 测试集的格式是相同的训练集。 MNIST 文件的主存储库是目前位于 yann.lecun.com/exdb/mnist。 培训的像素数据存储在文件火车-图像-idx3-ubyte.gz 和培训标签数据存储在文件火车-标签-idx1-ubyte.gz。 若要运行该演示程序,您需要转到 MNIST 的存储库站点,下载并解压的两个培训数据文件。 将文件解压缩,我用的免费的开源 7-Zip 实用程序。
创建 MNIST 查看器
若要创建 MNIST 演示程序,我发起了 Visual Studio,创建一个名为 MnistViewer 的新 C# Windows 窗体项目。 演示有没有重大的.NET 版本依赖关系,因此,任何版本的 Visual Studio 应该工作。
模板代码加载到 Visual Studio 编辑器后,我设置的 UI 控件。 我添加了两个 TextBox 控件 (textBox1,textBox2) 要坚持两个解压后的培训文件的路径。 我添加一个按钮控件 (button1),并给了它一个标签加载图像。 我添加了两个多个 TextBox 控件 (textBox3,textBox4) 以保存当前图像索引和下一个图像索引的值。 我使用 Visual Studio 设计器,分别设置"NA"和"0,"这些控件的初始值。
我添加了一个 ComboBox 控件 (comboBox1) 的图像放大倍数值。 使用设计器,我去到该控件的项集合,添加字符串"1"到"10"。我添加了第二个按钮控件 (button2),并给了它一个标签的显示下一次。 我添加了 PictureBox 控件 (pictureBox1),将其背景色属性设置为 ControlDark,以便看到控件的轮廓。 我将图片框大小设置为 280 x 280 允许最多 10 倍的放大倍率 (回顾 MNIST 图像是 28 x 28 像素为单位)。 我添加了第五个 (textBox5) 文本框以显示十六进制值的图像,然后将其多行属性设置为 True 和其字体属性设置为 8.25 磅 Courier New 和扩大其大小到 606 x 412。 而且,最后,我添加了一个列表框控件 (listBox1) 的日志记录消息。
后放置 UI 控件拖到 Windows 窗体,添加三个类范围字段:
public partial class Form1 : Form
{
private string pixelFile =
@"C:\MnistViewer\train-images.idx3-ubyte";
private string labelFile =
@"C:\MnistViewer\train-labels.idx1-ubyte";
private DigitImage[] trainImages = null;
...

第一次两个字符串指向解压后的培训数据文件的位置。 你会需要编辑这些要运行演示的两个字符串。 第三个字段是一个程序定义 DigitImage 对象的数组。
我编辑窗体的构造函数略成 textBox1 和 textBox2 地点的文件路径,并给予放大倍数初始值 6:
public Form1()
{
InitializeComponent();
textBox1.Text = pixelFile;
textBox2.Text = labelFile;
comboBox1.SelectedItem = "6";
this.ActiveControl = button1;
}

我用的 ActiveControl 属性来设置初始焦点到 button1 控件,只是为了方便。