❶ 三极管的功能
三极管是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把整块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区。
在制造三极管时,有意识地使发射区的多数载流子浓度大于基区的,同时基区做得很薄,而且,要严格控制杂质含量,这样,一旦接通电源后,由于发射结正偏。
发射区的多数载流子(电子)及基区的多数载流子(空穴)很容易地越过发射结互相向对方扩散,但因前者的浓度基大于后者,所以通过发射结的电流基本上是电子流,这股电子流称为发射极电子流。
(1)晶体管图片唯美扩展阅读:
晶体三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把整块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种。
从三个区引出相应的电极,分别为基极b发射极e和集电极c。
发射区和基区之间的PN结叫发射结,集电区和基区之间的PN结叫集电结。基区很薄,而发射区较厚,杂质浓度大,PNP型三极管发射区"发射"的是空穴,其移动方向与电流方向一致,故发射极箭头向里。
❷ CPU哪么多晶体管是怎么样集成上去的有里面的图片吗
在cup 硅班上涂上一种仿腐蚀材料
是用 大的模版,利用凸面镜的投影,光刻在上边
被光照到的地方,防腐材料实效
然后再经过腐蚀,线路图就出来了
好像是这样,
这个问题我答对了。给我分
❸ 晶体三极管比场效应管的制造工艺为什么简单场效应管可以代替三极管使用吗
场效应管的原件要比晶体管小得多。晶体管就是一个小硅片。但是场效应管的结构要比晶体管的要复杂。场效应管的沟道一般是几个纳米,也就是说场效应管的“硅片”的制作更加复杂而且体积要比晶体管小的多。但是话又说回来。工业制造场效应管的集成电路要比晶体管的要简单得多。而且集成密度要比晶体管的要大得多。场效应管是电压控制电流的晶体管是电流控制电流型的。一般不可以直接代换的。除非稍微改变一下电路结构。谢谢。至于结构可以找图片在网络上。哦还有MOSFET就是场效应管的意思,简称MOS。而双结型晶体管简称为BJT。结型场效应管简称为JFET。希望你可以用上。呵呵
❹ 我想认识晶体管芯谁有二极管、三极管这类的芯片在显微镜下的图片,并清楚每一层是什么
我想没有多少人有幸在显微镜下看到过这些晶片;
但是即便在显微镜下估计也不会看到如书本那样的有明显的分层结构;
另外如果你都是依靠一些直观的东西才能理解其原理,那就很难深入学习下去,
必须学会用逻辑思维去分析、理解和推导。
❺ 芯片上的成千上万个晶体管是怎么安上去的
首先, 你得画出来一个长这样的玩意儿给Foundry (外包的晶圆制造公司)
A, B 是输入, Y是输出.其中蓝色的是金属1层, 绿色是金属2层, 紫色是金属3层, 粉色是金属4层...
那晶体管(更正, 题主的"晶体管" 自199X年以后已经主要是 MOSFET, 即场效应管了 ) 呢?
仔细看图, 看到里面那些白色的点吗? 那是衬底, 还有一些绿色的边框? 那些是Active Layer (也即掺杂层.)然后Foundry是怎么做的呢? 大体上分为以下几步:
5、湿蚀刻(进一步洗掉, 但是用的是试剂, 所以叫湿蚀刻).--- 以上步骤完成后, 场效应管就已经被做出来啦~ 但是以上步骤一般都不止做一次, 很可能需要反反复复的做, 以达到要求. ---
6、等离子冲洗(用较弱的等离子束轰击整个芯片)6、热处理, 其中又分为:
7、快速热退火(就是瞬间把整个片子通过大功率灯啥的照到1200摄氏度以上, 然后慢慢地冷却下来, 为了使得注入的离子能更好的被启动以及热氧化)
❻ 晶体管计算机的图片
http://image..com/i?tn=image&ct=201326592&cl=2&lm=-1&pv=&word=%BE%A7%CC%E5%B9%DC%BC%C6%CB%E3%BB%FA&z=0
网络图片搜索下,很多的。。
❼ 三极管和MOS管有什么区别
三极管和MOS管的区别:
1、工作性质:三极管用电流控制,MOS管属于电压控制。
2、成本问题:三极管便宜,MOS管贵。
3、功耗问题:三极管损耗大,MOS管较小。
4、驱动能力:mos管常用来电源开关,以及大电流地方开关电路。
(7)晶体管图片唯美扩展阅读:
产品参数
特征频率
当f= fT时,三极管完全失去电流放大功能.如果工作频率大于fT,电路将不正常工作。
fT称作增益带宽积,即fT=βfo。若已知当前三极管的工作频率fo以及高频电流放大倍数,便可得出特征频率fT。随着工作频率的升高,放大倍数会下降.fT也可以定义为β=1时的频率。
电压/电流
用这个参数可以指定该管的电压电流使用范围。
hFE
电流放大倍数。
VCEO
集电极发射极反向击穿电压,表示临界饱和时的饱和电压。
PCM
最大允许耗散功率.
封装形式
指定该管的外观形状,如果其它参数都正确,封装不同将导致组件无法在电路板上实现。
工作状态
截止状态
当加在三极管发射结的电压小于PN结的导通电压,基极电流为零,集电极电流和发射极电流都为零,三极管这时失去了电流放大作用,集电极和发射极之间相当于开关的断开状态,我们称三极管处于截止状态。
放大状态
当加在三极管发射结的电压大于PN结的导通电压,并处于某一恰当的值时,三极管的发射结正向偏置,集电结反向偏置,这时基极电流对集电极电流起着控制作用,使三极管具有电流放大作用,其电流放大倍数β=ΔIc/ΔIb,这时三极管处放大状态。
饱和导通
当加在三极管发射结的电压大于PN结的导通电压,并当基极电流增大到一定程度时,集电极电流不再随着基极电流的增大而增大,而是处于某一定值附近不怎么变化,这时三极管失去电流放大作用,集电极与发射极之间的电压很小,集电极和发射极之间相当于开关的导通状态。
三极管的这种状态我们称之为饱和导通状态。
根据三极管工作时各个电极的电位高低,就能判别三极管的工作状态,因此,电子维修人员在维修过程中,经常要拿多用电表测量三极管各脚的电压,从而判别三极管的工作情况和工作状态。
参考资料来源:网络-三极管
参考资料来源:网络-mos管
❽ IB33AC是什么晶体管
晶体管(transistor)是一种固体半导体器件,具有检波、整流、放大、开关、稳压、信号调制等多种功能。晶体管作为一种可变电流开关,能够基于输入电压控制输出电流。与普通机械开关(如Relay、switch)不同,晶体管利用电讯号来控制自身的开合,而且开关速度可以非常快,实验室中的切换速度可100GHz以上。
指内含集成电路的硅片,体积很小,常常是计算机或其他电子设备的一部分。
广义上,只要是使用微细加工手段制造出来的半导体片子,都可以叫做芯片,里面并不一定有电路。比如半导体光源芯片;比如机械芯片,如MEMS陀螺仪;或者生物芯片如DNA芯片。在通讯与信息技术中,当把范围局限到硅集成电路时,芯片和集成电路的交集就是在“硅晶片上的电路”上。芯片组,则是一系列相互关联的芯片组合,它们相互依赖,组合在一起能发挥更大的作用,比如计算机里面的处理器和南北桥芯片组,手机里面的射频、基带和电源管理芯片组。
以下这篇文章和你一起学习,《芯片里面的几千万的晶体管是怎么装进去的?》,来自网摘。
要想造个芯片, 首先, 你得画出来一个长这样的玩意儿给Foundry (外包的晶圆制造公司)
(此处担心有版权问题… 毕竟我也是拿别人钱干活的苦逼phd… 就不放全电路图了… 大家看看就好, 望理解!)
再放大...
我们终于看到一个门电路啦! 这是一个NAND Gate(与非门), 大概是这样:
A, B 是输入, Y是输出.
其中蓝色的是金属1层, 绿色是金属2层, 紫色是金属3层, 粉色是金属4层...
那晶体管(更正, 题主的"晶体管" 自199X年以后已经主要是 MOSFET, 即场效应管了 ) 呢?
仔细看图, 看到里面那些白色的点吗? 那是衬底, 还有一些绿色的边框? 那些是Active Layer (也即掺杂层.)
然后Foundry是怎么做的呢? 大体上分为以下几步:
首先搞到一块圆圆的硅晶圆, (就是一大块晶体硅, 打磨的很光滑, 一般是圆的)
图片按照生产步骤排列. 但是步骤总结单独写出.
1、湿洗(用各种试剂保持硅晶圆表面没有杂质)
2、光刻 (用紫外线透过蒙版照射硅晶圆, 被照到的地方就会容易被洗掉, 没被照到的地方就保持原样. 于是就可以在硅晶圆上面刻出想要的图案. 注意, 此时还没有加入杂质, 依然是一个硅晶圆. )
3、 离子注入(在硅晶圆不同的位置加入不同的杂质, 不同杂质根据浓度/位置的不同就组成了场效应管.)
4.1、干蚀刻 (之前用光刻出来的形状有许多其实不是我们需要的,而是为了离子注入而蚀刻的. 现在就要用等离子体把他们洗掉, 或者是一些第一步光刻先不需要刻出来的结构, 这一步进行蚀刻).
4.2、湿蚀刻(进一步洗掉, 但是用的是试剂, 所以叫湿蚀刻).--- 以上步骤完成后, 场效应管就已经被做出来啦~ 但是以上步骤一般都不止做一次, 很可能需要反反复复的做, 以达到要求. ---
5、等离子冲洗(用较弱的等离子束轰击整个芯片)
6、热处理, 其中又分为:
6.1、快速热退火 (就是瞬间把整个片子通过大功率灯啥的照到1200摄氏度以上, 然后慢慢地冷却下来, 为了使得注入的离子能更好的被启动以及热氧化)
6.2、退火
6.3、热氧化 (制造出二氧化硅, 也即场效应管的栅极(gate) )
7、化学气相淀积(CVD), 进一步精细处理表面的各种物质
8、物理气相淀积 (PVD),类似, 而且可以给敏感部件加coating
9、分子束外延 (MBE) 如果需要长单晶的话就需要这个..
10、电镀处理
11、化学/机械 表面处理然后芯片就差不多了, 接下来还要:
12、晶圆测试
13、晶圆打磨就可以出厂封装了.我们来一步步看:
就可以出厂封装了.我们来一步步看:
1、上面是氧化层, 下面是衬底(硅) -- 湿洗
2、一般来说, 先对整个衬底注入少量(10^10 ~ 10^13 / cm^3) 的P型物质(最外层少一个电子), 作为衬底 -- 离子注入
3、先加入Photo-resist, 保护住不想被蚀刻的地方 -- 光刻
4、上掩膜! (就是那个标注Cr的地方. 中间空的表示没有遮盖, 黑的表示遮住了.) -- 光刻
5、紫外线照上去... 下面被照得那一块就被反应了 -- 光刻
6、撤去掩膜. -- 光刻
7、把暴露出来的氧化层洗掉, 露出硅层(就可以注入离子了) -- 光刻8、把保护层撤去. 这样就得到了一个准备注入的硅片. 这一步会反复在硅片上进行(几十次甚至上百次). -- 光刻
9、然后光刻完毕后, 往里面狠狠地插入一块少量(10^14 ~ 10^16 /cm^3) 注入的N型物质就做成了一个N-well (N-井) -- 离子注入10、用干蚀刻把需要P-well的地方也蚀刻出来. 也可以再次使用光刻刻出来. -- 干蚀刻
11、上图将P-型半导体上部再次氧化出一层薄薄的二氧化硅. -- 热处理
12、用分子束外延处理长出的一层多晶硅, 该层可导电 -- 分子束外延
13、进一步的蚀刻, 做出精细的结构. (在退火以及部分CVD) -- 重复3-8光刻 + 湿蚀刻13 进一步的蚀刻, 做出精细的结构. (在退火以及部分CVD) -- 重复3-8光刻 + 湿蚀刻
14、再次狠狠地插入大量(10^18 ~ 10^20 / cm^3) 注入的P/N型物质, 此时注意MOSFET已经基本成型. -- 离子注入
15、用气相积淀 形成的氮化物层 -- 化学气相积淀
16、将氮化物蚀刻出沟道 -- 光刻 + 湿蚀刻
17、物理气相积淀长出 金属层 -- 物理气相积淀
18、将多余金属层蚀刻. 光刻 + 湿蚀刻重复 17-18 长出每个金属层哦对了... 最开始那个芯片, 大小大约是1.5mm x 0.8mm
啊~~ 找到一本关于光刻的书, 更新一下, 之前的回答有谬误..
书名: << IC Fabrication Technology >> By BOSE
细说一下光刻. 题主问了: 小于头发丝直径的操作会很困难, 所以光刻(比如说100nm)是怎么做的呢?
比如说我们要做一个100nm的门电路(90nm technology), 那么实际上是这样的:
这层掩膜是第一层, 大概是10倍左右的Die Size有两种方法制作: Emulsion Mask 和 Metal MaskEmulsion Mask:
这货分辨率可以达到 2000line / mm (其实挺差劲的... 所以sub-micron ,也即um级别以下的 VLSI不用... )这货分辨率可以达到 2000line / mm (其实挺差劲的... 所以sub-micron ,也即um级别以下的 VLSI不用... )制作方法: 首先: 需要在Rubylith (不会翻译...) 上面刻出一个比想要的掩膜大个20倍的形状 (大概是真正制作尺寸的200倍), 这个形状就可以用激光什么的刻出来, 只需要微米级别的刻度.
然后:
给!它!照!相! , 相片就是Emulsion Mask! 给!它!照!相! , 相片就是Emulsion Mask! 如果要拍的"照片"太大, 也有分区域照的方法. Metal Mask:
制作过程: 1、先做一个Emulsion Mask, 然后用Emulsion Mask以及我之前提到的17-18步做Metal Mask! 瞬间有种Recursion的感觉有木有!!!
2、Electron beam:
大概长这样
制作的时候移动的是底下那层. 电子束不移动.
就像打印机一样把底下打一遍.
好处是精度特别高, 目前大多数高精度的(<100nm技术)都用这个掩膜. 坏处是太慢...
做好掩膜后:
Feature Size = k*lamda / NA
k一般是0.4, 跟制作过程有关; lamda是所用光的波长; NA是从芯片看上去, 放大镜的倍率.
以目前的技术水平, 这个公式已经变了, 因为随着Feature Size减小, 透镜的厚度也是一个问题了
Feature Size = k * lamda / NA^2
恩.. 所以其实掩膜可以做的比芯片大一些. 至于具体制作方法, 一般是用高精度计算机探针 + 激光直接刻板. Photomask(掩膜) 的材料选择一般也比硅晶片更加灵活, 可以采用很容易被激光汽化的材料进行制作.
这个光刻的方法绝壁是个黑科技一般的点! 直接把Lamda缩小了一个量级, With no extra cost! 你们说吼不吼啊!
Food for Thought: Wikipedia上面关于掩膜的版面给出了这样一幅图, 假设用这样的掩膜最后做出来会是什么形状呢?
于是还没有人理Food for thought...
附图的步骤在每幅图的下面标注, 一共18步.
最终成型大概长这样:
其中, 步骤1-15 属于 前端处理 (FEOL), 也即如何做出场效应管
步骤16-18 (加上许许多多的重复) 属于后端处理 (BEOL) , 后端处理主要是用来布线. 最开始那个大芯片里面能看到的基本都是布线! 一般一个高度集中的芯片上几乎看不见底层的硅片, 都会被布线遮挡住.
SOI (Silicon-on-Insulator) 技术:
传统CMOS技术的缺陷在于: 衬底的厚度会影响片上的寄生电容, 间接导致芯片的性能下降. SOI技术主要是将 源极/漏极 和 硅片衬底分开, 以达到(部分)消除寄生电容的目的.
传统:
SOI:
制作方法主要有以下几种(主要在于制作硅-二氧化硅-硅的结构, 之后的步骤跟传统工艺基本一致.)1. 高温氧化退火:
在硅表面离子注入一层氧离子层
等氧离子渗入硅层, 形成富氧层
高温退火
成型.
或者是2. Wafer Bonding(用两块! )不是要做夹心饼干一样的结构吗? 爷不差钱! 来两块!
来两块!对硅2进行表面氧化对硅2进行氢离子注入对硅2进行氢离子注入翻面将氢离子层处理成气泡层将氢离子层处理成气泡层切割掉多余部分切割掉多余部分成型! + 再利用光刻离子注入离子注入
微观图长这样:
再次光刻+蚀刻
撤去保护, 中间那个就是Fin撤去保护, 中间那个就是Fin门部位的多晶硅/高K介质生长门部位的多晶硅/高K介质生长门部位的氧化层生长门部位的氧化层生长长成这样源极 漏极制作(光刻+ 离子注入)初层金属/多晶硅贴片蚀刻+成型物理气相积淀长出表面金属层(因为是三维结构, 所有连线要在上部连出)机械打磨(对! 不打磨会导致金属层厚度不一致)
❾ 怎么用晶体管画与门、或门原理图
先要明白晶体管在饱和和截止(即开关工作模式)的原理
然后根据数字逻辑知识,就可以画出来了
关键还是Bjt和CmosFET的工作原理,这些模拟电路基础知识要懂才行
门电路都是晶体管开关电路
原理图教科书上不都有吗,找本教材看啊
下面是个CMOSfet的与门图,或门原理也一样类似: