當前位置:首頁 » 背景圖片 » ccd在哪裡圖片退出
擴展閱讀
新版本封家哪些圖片 2024-03-29 22:06:22

ccd在哪裡圖片退出

發布時間: 2022-06-30 13:17:44

① ccd是什麼樣的用在哪裡

Charge Coupled Device (CCD) 電荷耦合器件。CCD是一種半導體裝置,能夠把光學影像轉化為數字信號。 CCD上植入的微小光敏物質稱作像素(Pixel)。一塊CCD上包含的像素數越多,其提供的畫面解析度也就越高。CCD的作用就像膠片一樣,但它是把圖像像素轉換成數字信號。CCD在攝像機、數碼相機和掃描儀中應用廣泛,只不過攝像機中使用的是點陣CCD,即包括x、y兩個方向用於攝取平面圖像,而掃描儀中使用的是線性CCD,它只有x一個方向,y方向掃描由掃描儀的機械裝置來完成。

CCD它使用一種高感光度的半導體材料製成,能把光線轉變成電荷,通過模數轉換器晶元轉換成數字信號,數字信號經過壓縮以後由相機內部的閃速存儲器或內置硬碟卡保存,因而可以輕而易舉地把數據傳輸給計算機,並藉助於計算機的處理手段,根據需要和想像來修改圖像。CCD由許多感光單位組成,通常以百萬像素為單位。當CCD表面受到光線照射時,每個感光單位會將電荷反映在組件上,所有的感光單位所產生的信號加在一起,就構成了一幅完整的畫面。

CCD,是英文Charge Coupled Device 即電荷耦合器件的縮寫,它是一種特殊半導體器件,上面有很多一樣的感光元件,每個感光元件叫一個像素。CCD在攝像機里是一個極其重要的部件,它起到將光線轉換成電信號的作用,類似於人的眼睛,因此其性能的好壞將直接影響到攝像機的性能。

衡量CCD好壞的指標很多,有像素數量,CCD尺寸,靈敏度,信噪比等,其中像素數以及CCD尺寸是重要的指標。像素數是指CCD上感光元件的數量。攝像機拍攝的畫面可以理解為由很多個小的點組成,每個點就是一個像素。顯然,像素數越多,畫面就會越清晰,如果CCD沒有足夠的像素的話,拍攝出來的畫面的清晰度就會大受影響,因此,理論上CCD的像素數量應該越多越好。但CCD像素數的增加會使製造成本以及成品率下降,而且在現行電視標准下,像素數增加到某一數量後,再增加對拍攝畫面清晰度的提高效果變得不明顯,因此,一般一百萬左右的像素數對一般的使用已經足夠了。

單CCD攝像機是指攝像機里只有一片CCD並用其進行亮度信號以及彩色信號的光電轉換,其中色度信號是用CCD上的一些特定的彩色遮罩裝置並結合後面的電路完成的。由於一片CCD同時完成亮度信號和色度信號的轉換,因此難免兩全,使得拍攝出來的圖像在彩色還原上達不到專業水平很的要求。為了解決這個問題,便出現了3CCD攝像機。3CCD,顧名思義,就是一台攝像機使用了3片CCD。我們知道,光線如果通過一種特殊的棱鏡後,會被分為紅,綠,藍三種顏色,而這三種顏色就是我們電視使用的三基色,通過這三基色,就可以產生包括亮度信號在內的所有電視信號。如果分別用一片CCD接受每一種顏色並轉換為電信號,然後經過電路處理後產生圖像信號,這樣,就構成了一個3CCD系統。

和單CCD相比,由於3CCD分別用3個CCD轉換紅,綠,藍信號,拍攝出來的圖像從彩色還原上要比單CCD來的自然,亮度以及清晰度也比單CCD好。但由於使用了三片CCD,3CCD攝像機的價格要比單CCD貴很多。

數碼相機規格表中的CCD一欄經常寫著「1/2.7英寸CCD」等。這里的「1/2.7英寸」就是CCD的尺寸,實際上就是CCD對角線的長度。

現有的數碼相機一般採用1/2.7英寸、1/2.5英寸和1/1.8英寸等尺寸的CCD。CCD是受光元件(像素)的集合體,接收透過鏡頭的光並將其轉換為電信號。在像素數一樣的情況下,CCD尺寸越大單位像素就越大。這樣,單位像素可以收集更多的光線,因此,理論上可以說有利於提高畫質。

但是,數碼相機畫質的好壞不僅是由CCD決定的。鏡頭以及通過CCD輸出的電信號形成圖像的電路的性能等也能夠影響到相機的畫質。所謂的「大尺寸CCD=高畫質」是不正確的。例如,雖然1/2.7英寸比1/1.8英寸尺寸小,但配備1/2.7英寸CCD的數碼相機並沒有受到畫質不好的批評。

現在,袖珍數碼相機日趨小巧輕便,出於設計上的考慮,其中大多採用1/2.7英寸的小型CCD。

順便說一句,1/2.7英寸的「型」有時也寫作「inch」,不過,在這里不是普通的「1英寸=25.4mm」。由於結合了CCD亮相前攝像機上使用的攝像管和顯示方式,因此,習慣上採用比較特殊的尺寸。1/2.7英寸為6.6mm,1/1.8英寸約為9mm。

② CCD圖片不見了怎麼辦

怎麼找回數碼相機上的照片文件呢?小編最新在使用數碼相機時發現之前拍攝的好多照片不見了,針對此類問題,我們其實可以通過以下方法找回的。

如果數碼相機上的照片無緣無故找不到了,最大的可能性就是數碼相機SD卡中的照片被刪除或文件丟失所造成的。對此可以拆下相機SD卡。

然後將相機SD卡通過讀卡器連接到電腦USB介面上,打開「我的電腦」,查看一下是否可以找到「可移動磁碟」類的盤符。

如果可以找到的話,我們可以藉助電腦數據恢復類工具嘗試對「可移動磁碟」進行掃描,從而找回SD卡上的已刪除的照片文件。接下來就可以藉助任意一款電腦數據恢復工具來實現Sd卡誤刪照片的恢復操作。

恢復相機內存卡上的照片詳細步驟如下:

1、下載並安裝《比特數碼照片恢復》軟體。

2、用讀卡器將您的相機內存卡連接電腦。

3、運行《比特數碼照片恢復》軟體,出現下面界面。

如果您的內存卡已經連接電腦,列表框會顯示您的內存卡,滑鼠左鍵點擊您的內存卡,然後點右下角的「開始掃描」。

4、軟體進入下面界面,正在分析您的內存卡,請耐心等待下面的進度條結束。

5、掃描結束,下圖是分析的結果。

勾選需要的數碼照片,點右下的導出按鈕即可導出選中的文件。

6、點"選擇目錄"按鈕,選擇導出目錄,請選擇您的電腦硬碟。

7、等待導出進度結束,恢復成功!

③ CCD是什麼意思

Charge Coupled Device (CCD) 電荷耦合器件。CCD是一種半導體裝置,能夠把光學影像轉化為數字信號。 CCD上植入的微小光敏物質稱作像素(Pixel)。一塊CCD上包含的像素數越多,其提供的畫面解析度也就越高。CCD的作用就像膠片一樣,但它是把圖像像素轉換成數字信號。CCD在攝像機、數碼相機和掃描儀中應用廣泛,只不過攝像機中使用的是點陣CCD,即包括x、y兩個方向用於攝取平面圖像,而掃描儀中使用的是線性CCD,它只有x一個方向,y方向掃描由掃描儀的機械裝置來完成。
CCD它使用一種高感光度的半導體材料製成,能把光線轉變成電荷,通過模數轉換器晶元轉換成數字信號,數字信號經過壓縮以後由相機內部的閃速存儲器或內置硬碟卡保存,因而可以輕而易舉地把數據傳輸給計算機,並藉助於計算機的處理手段,根據需要和想像來修改圖像。CCD由許多感光單位組成,通常以百萬像素為單位。當CCD表面受到光線照射時,每個感光單位會將電荷反映在組件上,所有的感光單位所產生的信號加在一起,就構成了一幅完整的畫面。
CCD,是英文Charge Coupled Device 即電荷耦合器件的縮寫,它是一種特殊半導體器件,上面有很多一樣的感光元件,每個感光元件叫一個像素。CCD在攝像機里是一個極其重要的部件,它起到將光線轉換成電信號的作用,類似於人的眼睛,因此其性能的好壞將直接影響到攝像機的性能。
衡量CCD好壞的指標很多,有像素數量,CCD尺寸,靈敏度,信噪比等,其中像素數以及CCD尺寸是重要的指標。像素數是指CCD上感光元件的數量。攝像機拍攝的畫面可以理解為由很多個小的點組成,每個點就是一個像素。顯然,像素數越多,畫面就會越清晰,如果CCD沒有足夠的像素的話,拍攝出來的畫面的清晰度就會大受影響,因此,理論上CCD的像素數量應該越多越好。但CCD像素數的增加會使製造成本以及成品率下降,而且在現行電視標准下,像素數增加到某一數量後,再增加對拍攝畫面清晰度的提高效果變得不明顯,因此,一般一百萬左右的像素數對一般的使用已經足夠了。
單CCD攝像機是指攝像機里只有一片CCD並用其進行亮度信號以及彩色信號的光電轉換,其中色度信號是用CCD上的一些特定的彩色遮罩裝置並結合後面的電路完成的。由於一片CCD同時完成亮度信號和色度信號的轉換,因此難免兩全,使得拍攝出來的圖像在彩色還原上達不到專業水平的要求。為了解決這個問題,便出現了3CCD攝像機。3CCD,顧名思義,就是一台攝像機使用了3片CCD。我們知道,光線如果通過一種特殊的棱鏡後,會被分為紅,綠,藍三種顏色,而這三種顏色就是我們電視使用的三基色,通過這三基色,就可以產生包括亮度信號在內的所有電視信號。如果分別用一片CCD接受每一種顏色並轉換為電信號,然後經過電路處理後產生圖像信號,這樣,就構成了一個3CCD系統。
和單CCD相比,由於3CCD分別用3個CCD轉換紅,綠,藍信號,拍攝出來的圖像從彩色還原上要比單CCD來的自然,亮度以及清晰度也比單CCD好。但由於使用了三片CCD,3CCD攝像機的價格要比單CCD貴很多。
四色CCD是索尼公司在2003年推出的一種CCD新技術。四色即紅 綠 藍 品紅(RGBE)相對與傳統的三色(紅 綠 藍),四色CCD的色彩還原錯誤率進一步降低。因而使色彩還原更逼真。首款採用四色CCD的數碼相機是SNOY DSC—F828
數碼相機規格表中的CCD一欄經常寫著「1/2.7英寸CCD」等。這里的「1/2.7英寸」就是CCD的尺寸,實際上就是CCD對角線的長度。
現有的數碼相機一般採用1/2.7英寸、1/2.5英寸和1/1.8英寸等尺寸的CCD。CCD是受光元件(像素)的集合體,接收透過鏡頭的光並將其轉換為電信號。在像素數一樣的情況下,CCD尺寸越大單位像素就越大。這樣,單位像素可以收集更多的光線,因此,理論上可以說有利於提高畫質。
但是,數碼相機畫質的好壞不僅是由CCD決定的。鏡頭以及通過CCD輸出的電信號形成圖像的電路的性能等也能夠影響到相機的畫質。所謂的「大尺寸CCD=高畫質」是不正確的。例如,雖然1/2.7英寸比1/1.8英寸尺寸小,但配備1/2.7英寸CCD的數碼相機並沒有受到畫質不好的批評。
現在,袖珍數碼相機日趨小巧輕便,出於設計上的考慮,其中大多採用1/2.7英寸的小型CCD。
順便說一句,1/2.7英寸的「型」有時也寫作「inch」,不過,在這里不是普通的「1英寸=25.4mm」。由於結合了CCD亮相前攝像機上使用的攝像管和顯示方式,因此,習慣上採用比較特殊的尺寸。1/2.7英寸為6.6mm,1/1.8英寸約為9mm。
[編輯本段]CCD攝像機的選擇和分類
CCD結構及工作原理來源於中國儀器超市(www.cimart.com.cn)的資料:
CCD結構包含感光二極體、並行信號寄存器、並行信號寄存器、信號放大器、數摸轉換器等項目,將分別敘述如下;
1. 感光二極體(Photodiode)
2. 並行信號寄存器(Shift Register):用於暫時儲存感光後產生的電荷。
3. 並行信號寄存器(Transfer Register):用於暫時儲存並行積存器的模擬信號並將電荷轉移放大。
4. 信號放大器:用於放大微弱電信號。
5. 數摸轉換器:將放大的電信號轉換成數字信號。
CCD的工作原理由微型鏡頭、分色濾色片、感光層等三層,將分別敘述如下;
1. 微型鏡頭
微型鏡頭為CCD的第一層,我們知道,數碼相機成像的關鍵是在於其感光層,為了擴展CCD的採光率,必須擴展單一像素的受光面積。但是提高採光率的辦法也容易使畫質下降。這一層「微型鏡頭」就等於在感光層前面加上一副眼鏡。因此感光面積不再因為感測器的開口面積而決定,而改由微型鏡片的表面積來決定。
2. 分色濾色片
分色濾色片為CCD的第二層,目前有兩種分色方式,一是RGB原色分色法,另一個則是CMYK補色分色法這兩種方法各有優缺點。首先,我們先了解一下兩種分色法的概念,RGB即三原色分色法,幾乎所有人類眼鏡可以識別的顏色,都可以通過紅、綠和藍來組成,而RGB三個字母分別就是Red, Green和Blue,這說明RGB分色法是通過這三個通道的顏色調節而成。再說CMYK,這是由四個通道的顏色配合而成,他們分別是青(C)、洋紅(M)、黃(Y)、黑(K)。在印刷業中,CMYK更為適用,但其調節出來的顏色不及RGB的多。
原色CCD的優勢在於畫質銳利,色彩真實,但缺點則是雜訊問題。因此,大家可以注意,一般採用原色CCD的數碼相機,在ISO感光度上多半不會超過400。相對的,補色CCD多了一個Y黃色濾色器,在色彩的分辨上比較仔細,但卻犧牲了部分影像的解析度,而在ISO值上,補色CCD可以容忍較高的感光度,一般都可設定在800以上
3. 感光層
感光層為CCD的第三層,這層主要是負責將穿過濾色層的光源轉換成電子信號,並將信號傳送到影像處理晶元,將影像還原。
CCD晶元就像人的視網膜,是攝像頭的核心。目前我國尚無能力製造,市場上大部分攝像頭採用的是日本SONY、SHARP、松下、LG等公司生產的晶元,現在韓國也有能力生產,但質量就要稍遜一籌。 因為晶元生產時產生不同等級,各廠家獲得途徑不同等原因,造成CCD採集效果也大不相同。在購買時,可以採取如下方法檢測:接通電源,連接視頻電纜到監視器,關閉鏡頭光圈,看圖像全黑時是否有亮點,屏幕上雪花大不大,這些是檢測CCD晶元最簡單直接的方法,而且不需要其它專用儀器。然後可以打開光圈,看一個靜物,如果是彩色攝像頭,最好攝取一個色彩鮮艷的物體,查看監視器上的圖像是否偏色,扭曲,色彩或灰度是否平滑。好的CCD可以很好的還原景物的色彩,使物體看起來清晰自然;而殘次品的圖像就會有偏色現象,即使面對一張白紙,圖像也會顯示藍色或紅色。個別CCD由於生產車間的灰塵,CCD靶面上會有雜質,在一般情況下,雜質不會影響圖像,但在弱光或顯微攝像時,細小的灰塵也會造成不良的後果,如果用於此類工作,一定要仔細挑選。
1、依成像色彩劃分
彩色攝像機:適用於景物細部辨別,如辨別衣著或景物的顏色。
黑白攝像機:適用於光線不充足地區及夜間無法安裝照明設備的地區,在僅監視景物的位置或移動時,可選用黑白攝像機。
2、依解析度靈敏度等劃分
影像像素在38萬以下的為一般型,其中尤以25萬像素(512*492)、解析度為400線的產品最普遍。
影像像素在38萬以上的高解析度型。
3、按CCD靶面大小劃分
CCD晶元已經開發出多種尺寸:
目前採用的晶元大多數為1/3」和1/4」。在購買攝像頭時,特別是對攝像角度有比較嚴格要求的時候,CCD靶面的大小,CCD與鏡頭的配合情況將直接影響視場角的大小和圖像的清晰度。
1英寸——靶面尺寸為寬12.7mm*高9.6mm,對角線16mm。
2/3英寸——靶面尺寸為寬8.8mm*高6.6mm,對角線11mm。
1/2英寸——靶面尺寸為寬6.4mm*高4.8mm,對角線8mm。
1/3英寸——靶面尺寸為寬4.8mm*高3.6mm,對角線6mm。
1/4英寸——靶面尺寸為寬3.2mm*高2.4mm,對角線4mm。
4、按掃描制式劃分
PAL制、NTSC制。 中國採用隔行掃描(PAL)制式(黑白為CCIR),標准為625行,50場,只有醫療或其它專業領域才用到一些非標准制式。另外,日本為NTSC制式,525行,60場(黑白為EIA)。
5、依供電電源劃分
110VAC(NTSC制式多屬此類);
220VAC
24VAC
12VDC
9VDC(微型攝像機多屬此類)。
6、按同步方式劃分
內同步:用攝像機內同步信號發生電路產生的同步信號來完成操作。
外同步:使用一個外同步信號發生器,將同步信號送入攝像機的外同步輸入端。
功率同步(線性鎖定,line lock):用攝像機AC電源完成垂直推動同步。
外VD同步:將攝像機信號電纜上的VD同步脈沖輸入完成外VD同步。
多台攝像機外同步:對多台攝像機固定外同步,使每一台攝像機可以在同樣的條件下作業,因各攝像機同步,這樣即使其中一台攝像機轉換到其他景物,同步攝像機的畫面亦不會失真。
7、按照度劃分,CCD又分為:
普通型 正常工作所需照度1~3LUX
月光型 正常工作所需照度0.1LUX左右
星光型 正常工作所需照度0.01LUX以下
紅外型 採用紅外燈照明,在沒有光線的情況下也可以成像
[編輯本段]CCD彩色攝像機的主要技術指標
CCD尺寸,亦即攝像機靶面。原多為1/2英寸,現在1/3英寸的已普及化,1/4英寸和1/5英寸也已商品化。
CCD像素,是CCD的主要性能指標,它決定了顯示圖像的清晰程度,解析度越高,圖像細節的表現越好。CCD是由面陣感光元素組成,每一個元素稱為像素,像素越多,圖像越清晰。現在市場上大多以25萬和38萬像素為劃界,38萬像素以上者為高清晰度攝像機。
水平解析度。彩色攝像機的典型解析度是在320到500電視線之間,主要有330線、380線、420線、460線、500線等不同檔次。解析度是用電視線(簡稱線TV LINES)來表示的,彩色攝像頭的解析度在330~500線之間。解析度與CCD和鏡頭有關,還與攝像頭電路通道的頻帶寬度直接相關,通常規律是1MHz的頻帶寬度相當於清晰度為80線。 頻帶越寬,圖像越清晰,線數值相對越大。
最小照度,也稱為靈敏度。是CCD對環境光線的敏感程度,或者說是CCD正常成像時所需要的最暗光線。照度的單位是勒克斯(LUX),數值越小,表示需要的光線越少,攝像頭也越靈敏。月光級和星光級等高增感度攝像機可工作在很暗條件,2~3lux屬一般照度,現在也有低於1lux的普通攝像機問世。
掃描制式。有PAL制和NTSC制之分。
攝像機電源。交流有220V、110V、24V,直流為12V 或9V。
信噪比。典型值為46db,若為50db,則圖像有少量雜訊,但圖像質量良好;若為60db,則圖像質量優良,不出現雜訊。
視頻輸出。多為1Vp-p、75Ω,均採用BNC接頭。
鏡頭安裝方式。有C和CS方式,二者間不同之處在於感光距離不同。
[編輯本段]CCD彩色攝像機的可調整功能
同步方式的選擇
A、對單台攝像機而言,主要的同步方式有下列三種:
內同步——利用攝像機內部的晶體振盪電路產生同步信號來完成操作。
外同步——利用一個外同步信號發生器產生的同步信號送到攝像機的外同步輸入端來實現同步。
電源同步——也稱之為線性鎖定或行鎖定,是利用攝像機的交流電源來完成垂直推動同步,即攝像機和電源零線同步。
B、對於多攝像機系統,希望所有的視頻輸入信號是垂直同步的,這樣在變換攝像機輸出時,不會造成畫面失真,但是由於多攝像機系統中的各台攝像機供電可能取自三相電源中的不同相位,甚至整個系統與交流電源不同步,此時可採取的措施有:
均採用同一個外同步信號發生器產生的同步信號送入各台攝像機的外同步輸入端來調節同步。
調節各台攝像機的「相位調節」電位器,因攝像機在出廠時,其垂直同步是與交流電的上升沿正過零點同相的,故使用相位延遲電路可使每台攝像機有不同的相移,從而獲得合適的垂直同步,相位調整范圍0~360度。
自動增益控制
所有攝像機都有一個將來自CCD的信號放大到可以使用水準的視頻放大器,其放大量即增益,等效於有較高的靈敏度,可使其在微光下靈敏,然而在亮光照的環境中放大器將過載,使視頻信號畸變。為此,需利用攝像機的自動增益控制(AGC)電路去探測視頻信號的電平,適時地開關AGC,從而使攝像機能夠在較大的光照范圍內工作,此即動態范圍,即在低照度時自動增加攝像機的靈敏度,從而提高圖像信號的強度來獲得清晰的圖像。
背景光補償
通常,攝像機的AGC工作點是通過對整個視場的內容作平均來確定的,但如果視場中包含一個很亮的背景區域和一個很暗的前景目標,則此時確定的AGC工作點有可能對於前景目標是不夠合適的,背景光補償有可能改善前景目標顯示狀況。
當背景光補償為開啟時,攝像機僅對整個視場的一個子區域求平均來確定其AGC工作點,此時如果前景目標位於該子區域內時,則前景目標的可視性有望改善。
電子快門
在CCD攝像機內,是用光學電控影像表面的電荷積累時間來操縱快門。電子快門控制攝像機CCD的累積時間,當電子快門關閉時,對NTSC攝像機,其CCD累積時間為1/60秒;對於PAL攝像機,則為1/50秒。當攝像機的電子快門打開時,對於NTSC攝像機,其電子快門以261步覆蓋從1/60秒到1/10000秒的范圍;對於PAL型攝像機,其電子快門則以311步覆蓋從1/50秒到1/10000秒的范圍。當電子快門速度增加時,在每個視頻場允許的時間內,聚焦在CCD上的光減少,結果將降低攝像機的靈敏度,然而,較高的快門速度對於觀察運動圖像會產生一個「停頓動作」效應,這將大大地增加攝像機的動態解析度。
白平衡
白平衡只用於彩色攝像機,其用途是實現攝像機圖像能精確反映景物狀況,有手動白平衡和自動白平衡兩種方式。
A、自動白平衡
連續方式——此時白平衡設置將隨著景物色彩溫度的改變而連續地調整,范圍為2800~6000K。這種方式對於景物的色彩溫度在拍攝期間不斷改變的場合是最適宜的,使色彩表現自然,但對於景物中很少甚至沒有白色時,連續的白平衡不能產生最佳的彩色效果。
按鈕方式——先將攝像機對准諸如白牆、白紙等白色目標,然後將自動方式開關從手動撥到設置位置,保留在該位置幾秒鍾或者至圖像呈現白色為止,在白平衡被執行後,將自動方式開關撥回手動位置以鎖定該白平衡的設置,此時白平衡設置將保持在攝像機的存儲器中,直至再次執行被改變為止,其范圍為2300~10000K,在此期間,即使攝像機斷電也不會丟失該設置。以按鈕方式設置白平衡最為精確和可靠,適用於大部分應用場合。
B、手動白平衡
開手動白平衡將關閉自動白平衡,此時改變圖像的紅色或藍色狀況有多達107個等級供調節,如增加或減少紅色各一個等級、增加或減少藍色各一個等級。除次之外,有的攝像機還有將白平衡固定在3200K(白熾燈水平)和5500K(日光水平)等檔次命令。
色彩調整
對於大多數應用而言,是不需要對攝像機作色彩調整的,如需調整則需細心調整以免影響其他色彩,可調色彩方式有:
紅色—黃色色彩增加,此時將紅色向洋紅色移動一步。
紅色—黃色色彩減少,此時將紅色向黃色移動一步。
藍色—黃色色彩增加,此時將藍色向青藍色移動一步。
藍色—黃色色彩減少,此時將藍色向洋紅色移動一步。
[編輯本段]CCD攝像機主要技術參數解釋
1. 什麼是CCD攝像機?
CCD是Charge Coupled Device(電荷耦合器件)的縮寫,它是一種半導體成像器件,因而具有靈敏度高、抗強光、畸變小、體積小、壽命長、抗震動等優點。
2. CCD攝像機的工作方式
被攝物體的圖像經過鏡頭聚焦至CCD晶元上,CCD根據光的強弱積累相應比例的電荷,各個像素積累的電荷在視頻時序的控制下,逐點外移,經濾波、放大處理後,形成視頻信號輸出。視頻信號連接到監視器或電視機的視頻輸入端便可以看到與原始圖像相同的視頻圖像。
3. 解析度的選擇
評估攝像機解析度的指標是水平解析度,其單位為線對,即成像後可以分辨的黑白線對的數目。常用的黑白攝像機的解析度一般為380-600,彩色為380-480,其數值越大成像越清晰。一般的監視場合,用400線左右的黑白攝像機就可以滿足要求。而對於醫療、圖像處理等特殊場合,用600線的攝像機能得到更清晰的圖像。
4. 成像靈敏度
通常用最低環境照度要求來表明攝像機靈敏度,黑白攝像機的靈敏度大約是0.02-0.5Lux(勒克斯),彩色攝像機多在1Lux以上。0.1Lux的攝像機用於普通的監視場合;在夜間使用或環境光線較弱時,推薦使用0.02Lux的攝像機。與近紅外燈配合使用時,也必須使用低照度的攝像機。另外攝像的靈敏度還與鏡頭有關,0.97Lux/F0.75相當於2.5Lux/F1.2相當於3.4Lux/F1.參考環境照度: 夏日陽光下 100000Lux 陰天室外 10000Lux 電視台演播室 1000Lux 距60W台燈60cm桌面 300Lux 室內日光燈 100Lux 黃昏室內 10Lux 20cm處燭光 10-15Lux 夜間路燈 0.1Lux
5. 電子快門
電子快門的時間在1/50-1/100000秒之間,攝像機的電子快門一般設置為自動電子快門方式,可根據環境的亮暗自動調節快門時間,得到清晰的圖像。有些攝像機允許用戶自行手動調節快門時間,以適應某些特殊應用場合。
6. 外同步與外觸發
外同步是指不同的視頻設備之間用同一同步信號來保證視頻信號的同步,它可保證不同的設備輸出的視頻信號具有相同的幀、行的起止時間。為了實現外同步,需要給攝像機輸入一個復合同步信號(C-sync)或復合視頻信號。外同步並不能保證用戶從指定時刻得到完整的連續的一幀圖像,要實現這種功能,必須使用一些特殊的具有外觸發功能的攝像機。
7. 光譜響應特性
CCD器件由硅材料製成,對近紅外比較敏感,光譜響應可延伸至1.0um左右。其響應峰值為綠光(550nm),分布曲線如右圖所示。夜間隱蔽監視時,可以用近紅外燈照明,人眼看不清環境情況,在監視器上卻可以清晰成像。由於CCD感測器表面有一層吸收紫外的透明電極,所以CCD對紫外不敏感。彩色攝像機的成像單元上有紅、綠、蘭三色濾光條,所以彩色攝像機對紅外、紫外均不敏感。
8. CCD晶元的尺寸
CCD的成像尺寸常用的有1/2"、1/3"等,成像尺寸越小的攝像機的體積可以做得更小些。在相同的光學鏡頭下,成像尺寸越大,視場角越大。 晶元規格 成像面大小(寬X高) 對角線 1/2 6.4x4.8mm 8mm 1/3 4.8x3.6mm 6mm
觀眾提問:
對於細節沒有寫清楚。首先,對於光線的處理沒有寫清楚,包括微型鏡頭是一個什麼樣的鏡頭(凸透鏡?),光線匯聚到象素?其次,對於分色濾色片的描述更模糊,如果是RGB,是有三個濾色片還是一個濾色片分時控制過慮的顏色來處理不同顏色的亮度?如果是三個濾色片,肯定會分為三層,每層要加上一個象素,這種方案基本可以否決。因此,應該是分時控制濾色,這樣的一個後果是比3CC的處理速度要慢很多(因為要控制濾色片的濾色),還要考慮一個區別就是通過控制濾色片的濾色效果是否有靜態濾色片(暫時稱為鏡頭濾色片,不能通過控制動態濾色)濾色效果好,這可能就是3CCD單CCD在成像上的區別。最後,對於3CCD的象素計算和單CCD如何對比也沒有說明。3CCD的原理是通過三棱鏡分光(RGB),然後投射的不同的CCD上面(個人認為3CCD和單CCD使用的CCD應該不是一樣的,3CCD使用的可能沒有濾色片,當然,也可以使用和單CCD一樣有濾色片的,這樣成本可能增加),這樣的一個後果是由一個CCD的象素決定了整個拍攝畫面的象素,而並不是廠家吹噓的畫面象素是單個CCD×3。這樣一來,松下的3CCD實際上是以犧牲畫面象素來換取色彩還原。象素當然可以通過數學插值的方式來補充,所以,對外看到的畫面象素和其他的單CCD的畫面象素一樣,如果放大,可能3CCD的畫面就比單CCD(同樣象素)的模糊,不知道有人測試過沒有。
這個問題一直困惑我很久,哪位高人解答一下,不勝感激。可能上面的文字描述的不是很清楚,可惜不能貼圖。如果哪位不清楚的可以QQ:4423875或者Email:[email protected]。另外,如果誰想測試一下3CCD和單CCD的畫面質量也可以發圖片給我研究一下。謝謝

④ ccd用在哪裡

ccd?
你指的是感光元件吧?

一般用在攝影器材方面

⑤ 列印機中ccd起什麼作用

在 確認列印機 電腦都是沒問題的情況下 1. 首先,將光碟放入光碟機中。如果光碟沒有自動運行,請直接跳到 第2步 ;如果光碟自動運行,將會出現如下窗口,如圖 4 開始安裝所示。點擊「取消」按鈕,退出 " 系列安裝程序」 的安裝向導。
2. 插上列印機的電源線,打開列印機電源並裝好墨盒,列印機一切准備就緒。 3. 然後, 插上 USB 連接線 ,將列印機和電腦連接好。此時,系統會發現一個新的硬體,並出現「添加新硬體向導」,如圖 5 找到新硬體所示。點擊「下一步」按鈕。 圖 5: 找到新硬體
4. 出現如圖 6 安裝硬體驅動程序所示界面,選擇 「搜索適於我的設備的驅動程序(推薦)」 ,然後點擊「下一步」按鈕。 圖 6: 安裝硬體驅動程序
5. 出現指定驅動程序可選的搜索位置的界面。 如果使用的是隨機光碟,選擇 「CD-ROM 驅動器」 ,如圖 7 搜索驅動文件所示。然後點擊「下一步」按鈕,系統將會在光碟上搜索驅動程序。 圖 7: 搜索驅動文件
如果使用的是下載的驅動程序,選擇 「指定一個位置」 ,如圖 8 搜索驅動文件所示。 圖 8: 搜索驅動文件
點擊「下一步」按鈕,然後選擇「瀏覽」,把路徑指向驅動程序解壓縮後生成的 「3500」 目錄,如圖 9 瀏覽所示,然後點擊「確定」按鈕。。 圖 9: 瀏覽
6. 驅動程序搜索完畢後,將會出現如圖 10 找到驅動程序所示的提示界面。點擊「下一步」按鈕,安裝程序就會開始安裝 USB 驅動程序。 圖 10: 找到驅動程序
7. 驅動程序安裝完畢後,將出現如圖 11 完成所示的提示,點擊「確定」按鈕。 圖 11: 完成
8. 請等待1分鍾左右, 安裝程序會繼續自動運行,並出現如圖 12 所示 正在安裝的界面。 圖 12: 正在安裝
9. 此過程安裝的是列印機的軟體部分。安裝完畢後,將會出現如圖 13 完成所示的安裝完成界面。此時,可以選擇「列印校準頁」、「列印測試頁」、「查看文檔」和「通過 web 注冊」幾個選項。在此, 我們推薦列印校準頁, 這樣可以對墨盒進行校準,以得到最佳的列印效果。 圖 13: 完成
10. 點擊「完成」按鈕,驅動程序安裝完畢。 此時,我們就可以進行正常的列印工作了。

⑥ 顯微鏡CCD的介紹

顯微鏡CCD是數碼顯微鏡最重要的配件之一,主要是對顯微圖片進行拍攝並傳輸到計算機上,能夠使顯微鏡上觀察到的圖像輸出到計算機,對這些顯微圖片進行比對、分析。 CCD,英文全稱:Charge-coupled Device,中文全稱:電荷耦合元件,可以稱為CCD圖像感測器。CCD是一種半導體器件,能夠把光學影像轉化為數字信號。 CCD上植入的微小光敏物質稱作像素(Pixel)。一塊CCD上包含的像素數越多,其提供的畫面解析度也就越高。CCD的作用就像膠片一樣,但它是把圖像像素轉換成數字信號。CCD上有許多排列整齊的電容,能感應光線,並將影像轉變成數字信號。經由外部電路的控制,每個小電容能將其所帶的電荷轉給它相鄰的電容。作為一種光數轉化元件,ccd已被廣泛應用與各個領域。顯微鏡CCD,也可以稱為顯微鏡成像系統、顯微鏡攝像頭等。

⑦ 我想問CCD相機的光敏元件在哪

感光元件在鏡頭後邊,電路板上面。
光敏PD的話,很多已經取消了。如果沒有取消,一般在閃光燈附近,在相機正面。

⑧ 如何檢測CCD,具體怎麼操作

檢測CCD方法:用一黑色的紙張蓋住鏡頭,單反相機選擇手動模式,按下一次到兩次快門,然後取出相片放進電腦,用電腦圖片查看器打開圖片放大到100%。看完整張相片是否有亮點,無亮點證明CCD質量100%無壞點,如果有一處亮點說明CCD是有問題的。

CCD,英文全稱:Charge-coupled Device,中文全稱:電荷耦合元件。可以稱為CCD圖像感測器,也叫圖像控制器。CCD是一種半導體器件,能夠把光學影像轉化為數字信號。 CCD上植入的微小光敏物質稱作像素(Pixel)。一塊CCD上包含的像素數越多,其提供的畫面解析度也就越高。CCD的作用就像膠片一樣,但它是把光信號轉換成電荷信號。CCD上有許多排列整齊的光電二極體,能感應光線,並將光信號轉變成電信號,經外部采樣放大及模數轉換電路轉換成數字圖像信號。此外,CCD還是蜂群崩潰混亂症的簡稱。

⑨ 數碼攝像機的CCD和數碼照相機的CCD在像素上的區別

DV的基本原理與DC相同,其核心部件都是CCD,它完成圖像的光學信號向電信號的轉換。與數碼相機一樣,CCD的像素數也是DV的一個重要指標,CCD像素數有CCD總像素、動態有效像素和靜態有效像素三個指標。CCD總像素是指DV採用的感光元件CCD所具備的像素值,這一數值的大小基本就決定了DV的檔次,如80萬像素級的DV便是指這類產品採用了總像素為80萬的CCD成像;動態有效像素是指DV在拍攝動態影像時可以達到的像素值,對於DV來說這是最重要的指標之一;而靜態有效像素則表示用DV進行靜態照片拍攝時可以達到的像素值,有些產品會在拍攝靜態影像時通過插值方式來提高這一數值,所以在選擇時須注意清楚這一數值是否是通過插值方式來實現的。

68萬像素級的DV拍攝的動態視頻就可以達到DVD所需要的500電視線的水平清晰度要求,而採用更高像素CCD的產品,除了滿足拍攝靜態照片需求外,還可以在色彩和精度方面對動態圖像進行補償,另外DV中使用的數碼防抖技術也需要額外的CCD像素數來支持。

所以說,DC、DV各有各的用途,側重點不同。但隨著兩類產品的發展目前有一種趨勢,就是DC的動態攝錄功能越來越強,DV中也出現了可以拍攝200萬、300萬像素甚至更高精度靜態照片的機型,更有三洋C系列DC/DV二合一的東西。但這類產品在眾多產品線中只是很少一部分,而且市場表現也並不十分理想。那麼DC拍攝動態圖像或者DV拍攝靜態圖像的困難在哪裡呢?

DC當作DV的難點,首先是難以實現高解析度,其次是光電系統的配合。

先說第一點:難以實現高解析度,雖然數碼相機的像素數高達數百萬,動態錄像的單幅圖像的像素數只要幾十萬,但動態錄像每秒鍾要記錄數十幀,總的數據量是非常龐大的,數碼相機的圖像處理晶元是專為處理靜態圖片設計的,要處理動態的流文件往往有些力不從心,因為DC、DV的圖像處理晶元都是專用晶元,其「高效率」來自於「功能專一」,要兼顧雙方,要麼使用運算能力更為強大的處理器,要麼犧牲處理效率,而前者意味著昂貴,後者意味著低能。另一方面,巨大的數據量需要龐大的存儲空間,所以現在主流的DV仍使用磁帶,因為即使採用高壓縮比的MPEG-4格式壓縮,512MB的存儲卡也只能存儲十幾分鍾的高精度錄像。

第二點:光電系統的配合。拍攝單張照片時可以預先變焦、對焦,精確是第一要求,為了精確甚至可以舍棄一點速度。拍攝動態圖像時,變焦、對焦與圖像拍攝同時進行,要求光電系統的配合不但要准整,而且要快,甚至對「快」的要求超過了精度。所以,DC、DV兩者對光電系統配合的要求是不同的,很難兩邊兼顧。因此,現在很多DC雖然能夠拍攝錄像短片,卻不能在拍攝中途進行變焦操作,許多低端機型甚至在錄像開始後對焦距離也鎖定了。

DV當作DC的難點首先要考慮的仍是解析度,由於人們視覺感受的不同,對動態圖像精度的要求遠比靜態圖像低得多,標准PAL制式和NTSC制式的視頻信號,如果換算成像素來表示的話,單幅畫面的精度都不足30萬像素,VGA級(640x480,30萬像素)的視頻信號,已經算是高精度了,即使高清晰電視HDTV,單幅畫面也不過200萬像素(1920x1080像素),所以目前主流的DV仍是80萬像素。而就DC而言,目前300萬像素的機型,已經逐步退出主流市場,家用產品已經邁入500萬像素=500 萬像素,最大照片列印尺寸可達 50x75 厘米 (20x30 英寸)---柯達官方網站的數據---應該是夠用了。