当前位置:首页 » 图片软件 » 知识图谱软件图片大全
扩展阅读
女人的下内部图片 2025-06-13 21:50:10
图片去皱的软件是哪款 2025-06-13 21:49:35

知识图谱软件图片大全

发布时间: 2022-05-13 17:11:00

Ⅰ 知识图谱是什么哪些应用价值

知识图谱 (Knowledge Graph) 是当前的研究热点。自从2012年Google推出自己第一版知识图谱以来,它在学术界和工业界掀起了一股热潮。各大互联网企业在之后的短短一年内纷纷推出了自己的知识图谱产品以作为回应。比如在国内,互联网巨头网络和搜狗分别推出”知心“和”知立方”来改进其搜索质量。那么与这些传统的互联网公司相比,对处于当今风口浪尖上的行业 - 互联网金融, 知识图谱可以有哪方面的应用呢?

目录
1. 什么是知识图谱?
2. 知识图谱的表示
3. 知识图谱的存储
4. 应用
5. 挑战
6. 结语

1. 什么是知识图谱?

知识图谱本质上是语义网络,是一种基于图的数据结构,由节点(Point)和边(Edge)组成。在知识图谱里,每个节点表示现实世界中存在的“实体”,每条边为实体与实体之间的“关系”。知识图谱是关系的最有效的表示方式。通俗地讲,知识图谱就是把所有不同种类的信息(Heterogeneous Information)连接在一起而得到的一个关系网络。知识图谱提供了从“关系”的角度去分析问题的能力。

知识推理

推理能力是人类智能的重要特征,使得我们可以从已有的知识中发现隐含的知识, 一般的推理往往需要一些规则的支持【3】。例如“朋友”的“朋友”,可以推理出“朋友”关系,“父亲”的“父亲”可以推理出“祖父”的关系。再比如张三的朋友很多也是李四的朋友,那我们可以推测张三和李四也很有可能是朋友关系。当然,这里会涉及到概率的问题。当信息量特别多的时候,怎么把这些信息(side information)有效地与推理算法结合在一起才是最关键的。常用的推理算法包括基于逻辑(Logic) 的推理和基于分布式表示方法(Distributed Representation)的推理。随着深度学习在人工智能领域的地位变得越来越重要,基于分布式表示方法的推理也成为目前研究的热点。如果有兴趣可以参考一下这方面目前的工作进展【4,5,6,7】。

大数据、小样本、构建有效的生态闭环是关键

虽然现在能获取的数据量非常庞大,我们仍然面临着小样本问题,也就是样本数量少。假设我们需要搭建一个基于机器学习的反欺诈评分系统,我们首先需要一些欺诈样本。但实际上,我们能拿到的欺诈样本数量不多,即便有几百万个贷款申请,最后被我们标记为欺诈的样本很可能也就几万个而已。这对机器学习的建模提出了更高的挑战。每一个欺诈样本我们都是以很高昂的“代价”得到的。随着时间的推移,我们必然会收集到更多的样本,但样本的增长空间还是有局限的。这有区别于传统的机器学习系统,比如图像识别,不难拿到好几十万甚至几百万的样本。

在这种小样本条件下,构建有效的生态闭环尤其的重要。所谓的生态闭环,指的是构建有效的自反馈系统使其能够实时地反馈给我们的模型,并使得模型不断地自优化从而提升准确率。为了搭建这种自学习系统,我们不仅要完善已有的数据流系统,而且要深入到各个业务线,并对相应的流程进行优化。这也是整个反欺诈环节必要的过程,我们要知道整个过程都充满着博弈。所以我们需要不断地通过反馈信号来调整我们的策略。

6. 结语

知识图谱在学术界和工业界受到越来越多的关注。除了本文中所提到的应用,知识图谱还可以应用在权限管理,人力资源管理等不同的领域。在后续的文章中会详细地讲到这方面的应用。

参考文献

【1】De Abreu, D., Flores, A., Palma, G., Pestana, V., Pinero, J., Queipo, J., ... & Vidal, M. E. (2013). Choosing Between Graph Databases and RDF Engines for Consuming and Mining Linked Data. In COLD.

【2】User Behavior Tutorial

【3】刘知远 知识图谱——机器大脑中的知识库 第二章 知识图谱——机器大脑中的知识库

【4】Nickel, M., Murphy, K., Tresp, V., & Gabrilovich, E. A Review of Relational Machine Learning for Knowledge Graphs.

【5】Socher, R., Chen, D., Manning, C. D., & Ng, A. (2013). Reasoning with neural tensor networks for knowledge base completion. In Advances in Neural Information Processing Systems (pp. 926-934).

【6】Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., & Yakhnenko, O. (2013). Translating embeddings for modeling multi-relational data. In Advances in Neural Information Processing Systems (pp. 2787-2795).

【7】Jenatton, R., Roux, N. L., Bordes, A., & Obozinski, G. R. (2012). A latent factor model for highly multi-relational data. In Advances in Neural Information Processing Systems(pp. 3167-3175).

Ⅱ 有没有知识图谱自动化的构建工具

知识图谱构建工具_自动构建知识图谱 由于谷歌提出了“知识图谱”的概念,因此,很多人开始关注“知识图谱”。但如何构建“知识图谱”,尤其是如何自动构建知识图谱,却鲜有详细介绍。

Ⅲ 制作知识图谱需要什么软件

知识图谱(Knowledge Graph)又称为科学知识图谱,在图书情报界称为知识域可视化或知识领域映射地图,是显示知识发展进程与结构关系的一系列各种不同的图形,用可视化技术描述知识资源及其载体,挖掘、分析、构建、绘制和显示知识及它们之间的相互联系。

Ⅳ 什么软件可以自动识图建立起主体结构

网络识图可以自动识图建立起主体结构。
网络识图是通过图像识别和图片检索的技术,给用户提供海量的图片信息。在用户上传自己需要查找的图片时,网络识图会通过识别图片,在自己的海量图库中给用户展示更多尺寸和更多高清的图片和图片的url地址供用户使用。
网络识图共有4个主要功能:
1、相同图像搜索用户通过上传的图片进行搜索,网络识图工具会进行识别相似图片,从而提供给用户更多有水印/无水印的的图片,从而满足用户的搜索需求;
2、全网人脸搜索这个功能是网络识图引入的一种自动人脸识别技术,用户上传图片后,识图工具会将人脸信息在图库中进行搜索对比,能成功的识别出准确的信息反馈给用户;
3、相似图像搜索这个功能是根据网络的算法对图片进行识别,从海量的图库中提供给用户更多相似的图片;
4、图片知识图谱知识图谱是根据用户上传的照片进行信息识别,准确的给出用户所需的信息,目前网络主攻的是美女图片及植物网络的只是方面,用户在上传图片后,网络会给出准确的网络等信息。

Ⅳ 以下图标是什么app

掌门好家长,一个全科知识图谱APP

Ⅵ 使用知识图谱相关软件进行文献分析时,应注意哪些问题

摘要 你好,对于大部分书籍,重要的内容只占全书的20%左右,所以学会高效阅读很重要。阅读中,最好能练成一边阅读一边在脑海中简单构架思维导图的习惯和能力,这样可以大大的提升阅读效率。现在,我已经养成了有目的、有重点地进行阅读的习惯,这样可以使我在阅读中善于发现重点、新问题、新观点和新材料,这样既有助于提升阅读速度,同时也能提升阅读理解和记忆效率。当然了,这需要自己在平时的阅读中有意识的培养。注意文献分析的准确性。希望对你有所帮助。祝你生活愉快哦。

Ⅶ 如何构建知识图谱

自己建吗可以下载图谱软件构建
http://www.cnblogs.com/R0b1n/p/5224065.html可以参考一下这个

SPSS: 大型统计分析软件,商用软件。具有完整的数据输入、编辑、统计分析、报表、图形绘制等功能。常用于多元统计分析、数据挖掘和数据可视化。
Bibexcel: 瑞典科学计量学家Persoon开发的科学计量学软件,用于科学研究免费软件。具有文献计量分析、引文分析、共引分析、耦合分析、聚类分析和数据可视化等功能。可用于分析ISI的SCI、SSCI和A&HCI文献数据库。
HistCite: Eugene Garfield等人于2001年开发的科学文献引文链接分析和可视化系统,免费软件。可对ISI的SCI、SSCI和SA&HCI等文献数据库的引文数据进行计量分析,生成文献、作者和期刊的引文矩阵和实时动态引文编年图。直观的反映文献之间的引用关系、主题的宗谱关系、作者历史传承关系、科学知识发展演进等。
CiteSpace: 陈超美博士开发的专门用于科学知识图谱绘制的免费软件。国内使用最多知识图谱绘制软件。可用于追踪研究领域热点和发展趋势,了解研究领域的研究前沿及演进关键路径,重要的文献、作者及机构。可用于对ISI、CSSCI和CNKI等多种文献数据库进行分析。
TDA: Thomson Data Analyzer(TDA)是Thomson集团基于VantagePoint开发文献分析工具。商用软件。具有去重、分段等数据预处理功能;可形成共现矩阵、因子矩阵等多种分析矩阵;可使用Pearson、Cosine等多种算法进行数据标准化;可进行知识图谱可视化展示。
Sci2 Tools: 印第安纳大学开发的用于研究科学结构的模块化工具可从时间、空间、主题、网络分析和可视化等多角度,分析个体、局部和整体水平的知识单元。
ColPalRed: Gradnada大学开发的共词单元文献分析软件。商用软件。结构分析,在主题网络中展现知识(词语及其关系);战略分析,通过中心度和密度,在主题网络中为主题定位;动态分析,分析主题网络演变,鉴定主题路径和分支。
Leydesdorff: 系类软件。阿姆斯特丹大学Leydesdorff开发的这对文献计量的小程序集合。处理共词分析、耦合分析、共引分析等知识单元体系。使用“层叠图”实现可视化知识的静态布局和动态变化。
Word Smith: 词频分析软件。可将文本中单词出现频率排序和找出单词的搭配词组。
NWB Tools: 印第安纳大学开发的对大规模知识网络进行建模、分析和可视化工具. 数据预处理;构建共引、共词、耦合等多种网络;可用多种方法进行网络分析;可进行可视化展示.
Ucinet NetDraw: Ucinet是社会网络分析工具。包括网络可视化工具Net Draw。用于处理多种关系数据,可通过节点属性对节点的颜色、形状和大小等进行设置。用于社交网络分析和网络可视化。
Pajek: 来自斯洛文尼亚的分析大型网络的社会网络分析免费软件。Pajek基于图论、网络分析和可视化技术,主要用于大型网络分解,网络关系展示,科研作者合作网络图谱的绘制。
VOSviewer: 荷兰莱顿大学开发的文献可视化分析工具。使用基于VOS聚类技术技术实现知识单元可视化工具。突出特点可视化能力强,适合于大规模样本数据。四种视图浏览:标签视图、密度视图、聚类视图和分散视图。

[4]陈悦, 刘则渊, 陈劲等. 科学知识图谱的发展历程[J]. 科学学研究, 2008, (03): 449-460.

[5]Shiffrin, R.M., and Katy Börner. Mapping Knowledge Domains[C]. Proc. Proceedings of the National Academy of Sciences of the United States of America pp. 5183-5185.

[6]Börner, K., Chen, C.和Boyack, K.W. Visualizing knowledge domains[J]. Annual review of information science and technology, 2003, 37, (1): 179-255.

[7]CM, C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature[J]. Journal of the American Society for Information Science and Technology, 2006, 57, (3): 359-377.

[8]陈悦和刘则渊. 悄然兴起的科学知识图谱[J]. 科学学研究, 2005, (02): 149-154.

[9]邱均平. 信息计量学[M]. (武汉大学出版社, 2007. 2007).

[10]沙勇忠和牛春华. 信息分析[M]. (科学出版社, 2009. 2009).

[11]塞沃尔, 建军和煦. 链接分析: 信息科学的研究方法[M]. (东南大学出版社, 2009. 2009).

[12]Egghe, L.和Rousseau, R. Introction to informetrics: Quantitative methods in library, documentation and information science[J]. 1990

[13]韩家炜, 坎伯, 裴健等. 数据挖掘: 概念与技术[M]. (机械工业出版社, 2007. 2007).

[14]Wasserman, S. Social network analysis: Methods and applications[M]. (Cambridge university press, 1994. 1994).

[15]Persson, O., R. Danell, J. Wiborg Schneider. How to use Bibexcel for various types of bibliometric analysis[C]. Proc. International Society for Scientometrics and Informetrics., Leuven, Belgium2009 pp. 9–24.

[16]Yang, Y., Akers, L., Klose, T.等. Text mining and visualization tools–impressions of emerging capabilities[J]. World Patent Information, 2008, 30, (4): 280-293.

[17]Börner, K., Huang, W., Linnemeier, M.等. Rete-netzwerk-red: analyzing and visualizing scholarly networks using the Network Workbench Tool[J]. Scientometrics, 2010, 83, (3): 863-876.

[18]廖胜姣. 科学知识图谱绘制工具:SPSS和TDA的比较研究[J]. 图书馆学研究, 2011, (05): 46-49.

[19]Scott, M. WordSmith tools[M]. (Oxford: Oxford University Press, 1996. 1996).

[20]Batagelj, V.和Mrvar, A. Pajek - Program for Large Network Analysis[M]. (1998. 1998).

[21]Borgatti, S.P., Everett, M.G.和Freeman, L.C. Ucinet for Windows: Software for social network analysis[J]. 2002

[22]Van Eck, N.J.和Waltman, L. VOSviewer: A computer program for bibliometric mapping[J]. 2009

Ⅷ 什么是知识图谱

知识图谱,是通过将应用数学、图形学、信息可视化技术、信息科学等学科的理论与方法与计量学引文分析、共现分析等方法结合,并利用可视化的图谱形象地展示学科的核心结构、发展历史、前沿领域以及整体知识架构达到多学科融合目的的现代理论。

Ⅸ 什么软件可以学识图

1、网络识图

网络识图是通过图像识别和图片检索的技术,给用户提供海量的图片信息。在用户上传自己需要查找的图片时,网络识图会通过识别图片,在自己的海量图库中给用户展示更多尺寸和更多高清的图片和图片的url地址供用户使用。

网络识图共有4个主要功能:

1、相同图像搜索

用户通过上传的图片进行搜索,网络识图工具会进行识别相似图片,从而提供给用户更多有水印/无水印的的图片,从而满足用户的搜索需求;

2、全网人脸搜索

这个功能是网络识图引入的一种自动人脸识别技术,用户上传图片后,识图工具会将人脸信息在图库中进行搜索对比,能成功的识别出准确的信息反馈给用户;

3、相似图像搜索

这个功能是根据网络的算法对图片进行识别,从海量的图库中提供给用户更多相似的图片;

4、图片知识图谱

知识图谱是根据用户上传的照片进行信息识别,准确的给出用户所需的信息,目前网络主攻的是美女图片及植物网络的只是方面,用户在上传图片后,网络会给出准确的网络等信息,

2、形色APP

形色是一款专注于植物识别的APP,主要是进行花卉识别,目前形色一共有4000种植物,准确率高达92%。另外还有形色地图与社交等功能应用,算是一款比较小众的APP了。

这款APP的界面也是非常简单和小清新了,还有一些文章和社交版块,能够促进用户和用户之间的交流。

3、爱植拍APP

爱植拍是一款AI智能识别植物的神器,内部包含近6万种植物词库,光中国境内植物就包含3万多种,几乎覆盖身边所有常见的花草树木。不认识植物,一拍快速识别呈现植物相关信息。

和形色一样,这款APP也有分享功能,特别适合一些植物的爱好者,也适用于宝妈给孩子进行科普。简直是植物科普神器了!

目前我知道的几款比较好用的就是上面这三个了。如果还有其他比较好的工具也欢迎在下方留言,我会抽空回复。

Ⅹ 知识图谱有什么用处

知识图谱 (Knowledge Graph) 是当前的研究热点。自从2012年Google推出自己第一版知识图谱以来,它在学术界和工业界掀起了一股热潮。各大互联网企业在之后的短短一年内纷纷推出了自己的知识图谱产品以作为回应。比如在国内,互联网巨头网络和搜狗分别推出”知心“和”知立方”来改进其搜索质量。那么与这些传统的互联网公司相比,对处于当今风口浪尖上的行业 - 互联网金融, 知识图谱可以有哪方面的应用呢?

目录
1. 什么是知识图谱?
2. 知识图谱的表示
3. 知识图谱的存储
4. 应用
5. 挑战
6. 结语

1. 什么是知识图谱?

知识图谱本质上是语义网络,是一种基于图的数据结构,由节点(Point)和边(Edge)组成。在知识图谱里,每个节点表示现实世界中存在的“实体”,每条边为实体与实体之间的“关系”。知识图谱是关系的最有效的表示方式。通俗地讲,知识图谱就是把所有不同种类的信息(Heterogeneous Information)连接在一起而得到的一个关系网络。知识图谱提供了从“关系”的角度去分析问题的能力。

知识推理

推理能力是人类智能的重要特征,使得我们可以从已有的知识中发现隐含的知识, 一般的推理往往需要一些规则的支持【3】。例如“朋友”的“朋友”,可以推理出“朋友”关系,“父亲”的“父亲”可以推理出“祖父”的关系。再比如张三的朋友很多也是李四的朋友,那我们可以推测张三和李四也很有可能是朋友关系。当然,这里会涉及到概率的问题。当信息量特别多的时候,怎么把这些信息(side information)有效地与推理算法结合在一起才是最关键的。常用的推理算法包括基于逻辑(Logic) 的推理和基于分布式表示方法(Distributed Representation)的推理。随着深度学习在人工智能领域的地位变得越来越重要,基于分布式表示方法的推理也成为目前研究的热点。如果有兴趣可以参考一下这方面目前的工作进展【4,5,6,7】。

大数据、小样本、构建有效的生态闭环是关键

虽然现在能获取的数据量非常庞大,我们仍然面临着小样本问题,也就是样本数量少。假设我们需要搭建一个基于机器学习的反欺诈评分系统,我们首先需要一些欺诈样本。但实际上,我们能拿到的欺诈样本数量不多,即便有几百万个贷款申请,最后被我们标记为欺诈的样本很可能也就几万个而已。这对机器学习的建模提出了更高的挑战。每一个欺诈样本我们都是以很高昂的“代价”得到的。随着时间的推移,我们必然会收集到更多的样本,但样本的增长空间还是有局限的。这有区别于传统的机器学习系统,比如图像识别,不难拿到好几十万甚至几百万的样本。

在这种小样本条件下,构建有效的生态闭环尤其的重要。所谓的生态闭环,指的是构建有效的自反馈系统使其能够实时地反馈给我们的模型,并使得模型不断地自优化从而提升准确率。为了搭建这种自学习系统,我们不仅要完善已有的数据流系统,而且要深入到各个业务线,并对相应的流程进行优化。这也是整个反欺诈环节必要的过程,我们要知道整个过程都充满着博弈。所以我们需要不断地通过反馈信号来调整我们的策略。

6. 结语

知识图谱在学术界和工业界受到越来越多的关注。除了本文中所提到的应用,知识图谱还可以应用在权限管理,人力资源管理等不同的领域。在后续的文章中会详细地讲到这方面的应用。

参考文献

【1】De Abreu, D., Flores, A., Palma, G., Pestana, V., Pinero, J., Queipo, J., ... & Vidal, M. E. (2013). Choosing Between Graph Databases and RDF Engines for Consuming and Mining Linked Data. In COLD.

【2】User Behavior Tutorial

【3】刘知远 知识图谱——机器大脑中的知识库 第二章 知识图谱——机器大脑中的知识库

【4】Nickel, M., Murphy, K., Tresp, V., & Gabrilovich, E. A Review of Relational Machine Learning for Knowledge Graphs.

【5】Socher, R., Chen, D., Manning, C. D., & Ng, A. (2013). Reasoning with neural tensor networks for knowledge base completion. In Advances in Neural Information Processing Systems (pp. 926-934).

【6】Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., & Yakhnenko, O. (2013). Translating embeddings for modeling multi-relational data. In Advances in Neural Information Processing Systems (pp. 2787-2795).

【7】Jenatton, R., Roux, N. L., Bordes, A., & Obozinski, G. R. (2012). A latent factor model for highly multi-relational data. In Advances in Neural Information Processing Systems(pp. 3167-3175).