当前位置:首页 » 高清图片 » 高清坐标系图片
扩展阅读
周转箱图片什么颜色 2025-07-05 02:22:19
女人腿受伤的真实图片 2025-07-05 01:57:14

高清坐标系图片

发布时间: 2022-09-10 18:37:39

‘壹’ 有人能提供内蒙古地形图高清版吗

9 1 卫图助手免费版发布啦 !! 免 费 版就能轻松下载Google Earth等几十种无偏移影像、历史影像,及使用包含在线标注、投影转换(支持54,80,2000坐标系以及地方独立坐标系)在内的数十种功能,而且是永久免费的!!本软件可下载Google Earth影像、历史影像、陆地及海洋高程,矢量路网建筑地名点,全国乡镇及街区行政区划,影像无google字样水印, 并且有明确的拍摄日期,支持坐标系转换、在线标注(勾绘)、等高线生成、图幅下载、格式转换、矢量套合等多种功能,支持与AutoCAD, CASS, ArcGIS, MapGIS,Eardas,GoogleEarth等主流软件无缝对接。获取免费软件请加入 9 1 卫图官方 Q Q 群(群号: 812488903)或登录 9 1 卫图官方网站www.91weitu.com详询,

‘贰’ 如何在图片中建立坐标系,并求出坐标点

你可以在CAD中绘制一条线段,设置该线段的长度为1000米,然后,显示全图。
把上述图片用截图软件提取下来,然后,在CAD中附加该图,然后通过移动命令将图片以图中比例尺的一端与线段一端对齐,然后,用scale命令,将图片放大,参照线段长度,使得图片中的一公里与CAD中1公里线段对齐。然后,用多义线描绘蓝色部分,求面积就可。

‘叁’ 右手直角坐标系

右手系(right-hand system)是在空间中规定直角坐标系的方法之一。此坐标系中x轴,y轴和z轴的正方向是如下规定的:

把右手放在原点的位置,使大姆指,食指和中指互成直角,把大姆指指向x轴的正方向,食指指向y轴的正方向时,中指所指的方向就是z轴的正方向。

(3)高清坐标系图片扩展阅读:

右手系也可以按如下方法确定右手(左手)坐标系:如果当右手(左手)的大拇指指向第一个坐标轴(x轴)的正向,而其余手指以第二个轴(y轴)绕第一轴转动的方向握紧。

就与第三个轴(z轴)重合,就称此坐标系为右手(左手)坐标系,空间直角坐标系有右手系和左手系的区分。

‘肆’ 什么叫机床坐标系

机床坐标系原点也称机械原点、参考点或零点。通常所说的回零、回参考点,就是直线坐标或旋转坐标回到机床坐标系原点。那么机床坐标系原点究竟在什么位置呢?机床坐标系原点是三维面的交点。不像各坐标系回零一样可以直接感觉和测量,只有通过坐标轴的零点作相应的切面,这些切面的交点即为机床坐标系的原点。

‘伍’ 八、坐标系

OpenGL希望在每次顶点着色器运行后,可见的所有顶点都为标准化设备坐标(Normalized Device Coordinate, NDC)。也就是说,每个顶点的x,y,z坐标都应该在-1.0到1.0之间,超出这个坐标范围的顶点都将不可见。我们通常会自己设定一个坐标的范围,之后再在顶点着色器中将这些坐标变换为标准化设备坐标。然后将这些标准化设备坐标传入光栅器(Rasterizer),将它们变换为屏幕上的二维坐标或像素。

将坐标变换为标准化设备坐标,接着再转化为屏幕坐标的过程通常是分步进行的,也就是类似于流水线那样子。在流水线中,物体的顶点在最终转化为屏幕坐标之前还会被变换到多个坐标系统(Coordinate System)。将物体的坐标变换到几个过渡坐标系(Intermediate Coordinate System)的优点在于,在这些特定的坐标系统中,一些操作或运算更加方便和容易(例如,当需要对物体进行修改的时候,在局部空间中来操作会更说得通;如果要对一个物体做出一个相对于其它物体位置的操作时,在世界坐标系中来做这个才更说得通,等等)。比较重要的总共有5个不同的坐标系统:

为了将坐标从一个坐标系变换到另一个坐标系,需要用到几个变换矩阵,最重要的几个分别是模型(Model)、观察(View)、投影(Projection)三个矩阵。顶点坐标起始于局部空间(Local Space),在这里它称为局部坐标(Local Coordinate),它在之后会变为世界坐标(World Coordinate),观察坐标(View Coordinate),裁剪坐标(Clip Coordinate),并最后以屏幕坐标(Screen Coordinate)的形式结束。下面的这张图展示了整个流程以及各个变换过程做了什么:

由投影矩阵创建的观察箱(Viewing Box)被称为平截头体(Frustum),每个出现在平截头体范围内的坐标都会最终出现在用户的屏幕上。将特定范围内的坐标转化到标准化设备坐标系的过程(而且它很容易被映射到2D观察空间坐标)被称之为投影(Projection),因为使用投影矩阵能将3D坐标投影(Project)到很容易映射到2D的标准化设备坐标系中。

投影矩阵可以为两种不同的形式,每种形式都定义了不同的平截头体。我们可以选择创建一个正射投影矩阵(Orthographic Projection Matrix)或一个透视投影矩阵(Perspective Projection Matrix)。

正射投影矩阵定义了一个类似立方体的平截头箱,它定义了一个裁剪空间,在这空间之外的顶点都会被裁剪掉。创建一个正射投影矩阵需要指定可见平截头体的宽、高和长度。在使用正射投影矩阵变换至裁剪空间之后处于这个平截头体内的所有坐标将不会被裁剪掉。它的平截头体看起来像一个容器:

上面的平截头体定义了可见的坐标,它由由宽、高、近(Near)平面和远(Far)平面所指定。任何出现在近平面之前或远平面之后的坐标都会被裁剪掉。正射平截头体直接将平截头体内部的所有坐标映射为标准化设备坐标,因为每个向量的w分量都没有进行改变;如果w分量等于1.0,透视除法则不会改变这个坐标。

要创建一个正射投影矩阵,我们可以使用GLM的内置函数glm::ortho:

前两个参数指定了平截头体的左右坐标,第三和第四参数指定了平截头体的底部和顶部。通过这四个参数我们定义了近平面和远平面的大小,然后第五和第六个参数则定义了近平面和远平面的距离。这个投影矩阵会将处于这些x,y,z值范围内的坐标变换为标准化设备坐标。

正射投影矩阵直接将坐标映射到2D平面中,即你的屏幕,但实际上一个直接的投影矩阵会产生不真实的结果,因为这个投影没有将透视(Perspective)考虑进去。所以需要透视投影矩阵来解决这个问题。

越远的东西看起来更小,两条线在很远的地方看起来会相交,这正是透视投影想要模仿的效果。一个透视平截头体可以被看作一个不均匀形状的箱子,在这个箱子内部的每个坐标都会被映射到裁剪空间上的一个点。下面是一张透视平截头体的图片:

透视投影矩阵将给定的平截头体范围映射到裁剪空间,除此之外还修改了每个顶点坐标的w值,从而使得离观察者越远的顶点坐标w分量越大。之后通过透视除法,顶点坐标的每个分量都会除以它的w分量,距离观察者越远顶点坐标就会越小。

在GLM中可以这样创建一个透视投影矩阵:

它的第一个参数定义了fov的值,它表示的是视野(Field of View),并且设置了观察空间的大小。如果想要一个真实的观察效果,它的值通常设置为45.0f,但想要一个末日风格的结果可以将其设置一个更大的值。第二个参数设置了宽高比,由视口的宽除以高所得。第三和第四个参数设置了平截头体的近和远平面。通常设置近距离为0.1f,而远距离设为100.0f。所有在近平面和远平面内且处于平截头体内的顶点都会被渲染。

当你把透视矩阵的 near 值设置太大时(如10.0f),OpenGL会将靠近摄像机的坐标(在0.0f和10.0f之间)都裁剪掉,这会导致一个你在游戏中很熟悉的视觉效果:在太过靠近一个物体的时候你的视线会直接穿过去。

顶点着色器

应该将矩阵传入着色器(这通常在每次的渲染迭代中进行,因为变换矩阵会经常变动)。

OpenGL是一个三角形一个三角形地来绘制立方体的,所以即便之前那里有东西它也会覆盖之前的像素。因为这个原因,有些三角形会被绘制在其它三角形上面,虽然它们本不应该是被覆盖的。Z缓冲(Z-buffer)允许OpenGL决定何时覆盖一个像素而何时不覆盖。通过使用Z缓冲,可以配置OpenGL来进行深度测试。

OpenGL存储它的所有深度信息于一个Z缓冲(Z-buffer)中,也被称为深度缓冲(Depth Buffer)。GLFW会自动为你生成这样一个缓冲(就像它也有一个颜色缓冲来存储输出图像的颜色)。深度值存储在每个片段里面(作为片段的z值),当片段想要输出它的颜色时,OpenGL会将它的深度值和z缓冲进行比较,如果当前的片段在其它片段之后,它将会被丢弃,否则将会覆盖。这个过程称为深度测试(Depth Testing),它是由OpenGL自动完成的。

然而,如果想要确定OpenGL真的执行了深度测试,首先要告诉OpenGL启用深度测试;它默认是关闭的。可以通过glEnable函数来开启深度测试。glEnable和glDisable函数允许启用或禁用某个OpenGL功能。这个功能会一直保持启用/禁用状态,直到另一个调用来禁用/启用它。现在我们想启用深度测试,需要开启GL_DEPTH_TEST:

因为使用了深度测试,所以在每次渲染迭代之前清除深度缓冲(否则前一帧的深度信息仍然保存在缓冲中)。就像清除颜色缓冲一样,可以通过在glClear函数中指定DEPTH_BUFFER_BIT位来清除深度缓冲:

‘陆’ 谷歌地球的地理坐标系统是什么

Google Earth采用的3D地图定位技术能够把Google Map上的最新卫星图片推向一个新水平。用户可以在3D地图上搜索特定区域,放大缩小虚拟图片,然后形成行车指南。此外,Google Earth还精心制作了一个特别选项——鸟瞰旅途,让驾车人士的活力油然而生。

Google Earth主要通过访问Keyhole的航天和卫星图片扩展数据库来实现这些上述功能。该数据库在上星期进行了更新,它含有美国宇航局提供的大量地形数据,未来还将覆盖更多的地形,涉及田园,荒地等。

地理坐标系是用于确定点在地球上位置的坐标系。某一特定的地理坐标系是由一个特定的椭球体和一种特定的地图投影构成。

绝大多数的地图都是遵照一种已知的地理坐标系来显示坐标数据。例如,我国1:25 万地形图,其椭球体采用的是1975 年国际大地测量协会推荐的参考椭球体,而投影是高斯一克吕格投影。经纬度坐标系是最常用的地理坐标系,这个坐标系可以确定地球上任何一点的位置。

(6)高清坐标系图片扩展阅读

谷歌地球(Google Earth,下同)相较于其他地图网站功能的一个优点是:能够读取地面任一点的三维坐标——经度、纬度和海拔高,不需要用户注册登录和数据使用许可授权。

但是谷歌地球的数学精度究竟达到多少?在国内少见精度检测和权威认定的报道。而弄清楚谷歌地球的精度至少在以下两个方面是有意义的:

(1)便于用户对使用谷歌地球精度和可靠性的了解。

(2)有利于调整和完善我国网站地图(网络地图、高德地图、天地图等)数学精度限制政策。

‘柒’ 卫星图片是什么坐标系统,是经过投影后的么

他用的是x坐标,只有通过经纬才能显示出准确的位置。