當前位置:首頁 » 圖片軟體 » lumi圖片怎麼導入ps
擴展閱讀

lumi圖片怎麼導入ps

發布時間: 2022-09-12 23:16:41

❶ Luminex LumiSplit 2.10和LumiSplit 1.6功能上有什麼區別哪款更好

LumiSplit也有1.6桁架版本。 該設備具有與LumiSplit 2.10相同的功能(A / B區域選擇,合並模式和備份模式除外因為設備只有一個輸入)。 配有長安裝耳,1U單元也可以安裝在機架中,並且完美地與LumiSplit 2.10對齊。

多埠靈活性

LumiSplit 2.10為配置多條DMX線路的1U設備提供了的靈活性,具有2個輸入和10個輸出(Neutrik 5針XLR),帶有A / B區域選擇。

新RDM特點

從現在開始,您可以直接從RDM控制器找到,管理和設置所有LumiSplit設備。 即使將來的升級也可以在RDM上執行

完全隔離

所有LumiSplit DMX連接器均單獨配備光學和電流隔離。 這可以保護設備免受來自網路的任何尖峰和電涌。

RDM埠過濾

厭倦了與非RDM兼容設備的問題? LumiSplit在每 個輸出上都有RDM過濾功能,這可確保非RDM設備不會接收發送的RDM數據,而導致異常

合並和備份

LumiSplit 2.10可以配置為不同的工作模式,如HTP / LTP合並模式,備份模式和再生模式。

2個用戶配置文件專業銷售 Luminex LUMISPLIT 1.6模塊

將自定義預設保存在2個用戶配置文件插槽中。 通過這種方式,LumiSplit成為真正的即插即用設備,為緊張的工作節省時間。專業銷售 Luminex LUMISPLIT 1.6模塊

新前面板

帶有RGB LED指示燈的更新前面板為用戶提供了更好,更簡單的狀態指示。 前面板也可以鎖定,以防止發生事故。

可選吊掛版本

LumiSplit還有一個1.6版本,可以安裝在桁架和機架中(盒子里有安裝耳

❷ sketchup 模型怎麼導入lumion

1、開啟我們需要導入Lumion的模型文件,在草圖大師的上方菜單窗口中,點擊文件。

❸ 人類首張黑洞照片,有哪些重要意義

第一張……

國家天文台苟利軍研究員@Flyingspace :

這次的直接成像除了幫助我們直接確認了黑洞的存在,同時也通過模擬觀測數據對愛因斯坦的廣義相對論做出了驗證。在視界面望遠鏡的工作過程和後來的數據分析過程中,科學家們發現,所觀測到的黑洞陰影和相對論所預言的幾乎完全一致,令人不禁再次感嘆愛因斯坦的偉大。

愛因斯坦

另外一個重要意義在於,科學家們可以通過黑洞陰影的尺寸限制中心黑洞的質量了。這次就對M87中心的黑洞質量做出了一個獨立的測量。在此之前,精確測量黑洞質量的手段非常復雜。

受限於觀測解析度和靈敏度等因素,目前的黑洞細節分析還不完善。未來隨著更多望遠鏡加入,我們期望看到黑洞周圍更多更豐富的細節,從而更深入地了解黑洞周圍的氣體運動、區分噴流的產生和集束機制,完善我們對於星系演化的認知與理解

左文文(上海天文台):

如果要評選出2019年最有價值和最受期待的照片,那麼非下面這張照片莫屬。這是5500萬光年外的大質量星系M87中心超大質量黑洞的黑洞陰影照片,也是人類拍攝的首張黑洞照片。它是黑洞存在的直接「視覺」證據,從強引力場的角度驗證了愛因斯坦廣義相對論。

圖1:M87星系中心超大質量黑洞(M87*)的圖像,上圖為2017年4月11日的圖像,圖中心的暗弱區域即為「黑洞陰影」,周圍的環狀不對稱結構是由於強引力透鏡效應和相對論性射束(beaming)效應所造成的。由於黑洞的旋轉效應,圖片上顯示了上(北)下(南)的不對稱性。

這張照片於2017年4月拍攝,2年後才「沖洗」出來。2019年4月10日由黑洞事件視界望遠鏡(Event Horizon Telescope, EHT)合作組織協調召開全球六地聯合發布。

給黑洞拍照,有三個科學意義:

1. 對黑洞陰影的成像將能提供黑洞存在的直接「視覺」證據。黑洞是具有強引力的,給黑洞拍照最主要的目的就是在強引力場下驗證廣義相對論,看看觀測結果是否與理論預言一致。

2. 有助於理解黑洞是如何「吃」東西的。黑洞的「暗影」區域非常靠近黑洞吞噬物質形成的吸積盤的極內部區域,這里的信息尤為關鍵,綜合之前觀測獲得的吸積盤更外側的信息,就能更好地重構這個物理過程。

3. 有助於理解黑洞噴流的產生和方向。某些朝向黑洞下落的物質在被吞噬之前,會由於磁場的作用,沿著黑洞的轉動方向被噴出去。以前收集的信息多是更大尺度上的,科學家沒法知道在靠近噴流產生的源頭處發生了什麼。如果現在對黑洞暗影的拍攝,就能助天文學家一臂之力。

圖2:哈勃空間望遠鏡拍攝的M87,圖片版權:NASA

黑洞照片應該是這樣:圓形陰影+光環

一百年前,愛因斯坦廣義相對論提出後不久,便有科學家探討了黑洞周圍的光線彎曲現象。上世紀70年代,James Bardeen及Jean-Pierre Luminet等人計算出了黑洞的圖像。上世紀90年代,Heino Falcke等天文學家們首次基於廣義相對論下的光線追蹤程序,模擬出銀河系中心黑洞Sgr A*的樣子,引入了黑洞「陰影」的概念。

理論預言,受黑洞強引力場的影響,黑洞吸積或噴流產生的輻射光被黑洞彎曲,使得天空平面(與視線方向垂直的面)被黑洞「視邊界」(apparent boundary)的圓環一分為二:在視邊界圓環以內的光子,只要在視界面以外,就能逃離黑洞,但受到很強的引力紅移效應,亮度低;而視邊界圓環以外的光子,能繞著黑洞繞轉多圈,積累的亮度足夠高。

圖3:廣義相對論預言,將會看到一個近似圓形的暗影被一圈光子圓環包圍。由於旋轉效應,黑洞左側更亮。圖片版權:D. Psaltis and A. Broderick

從視覺上看,視邊界內側的亮度明顯更弱,看起來就像一個圓形的陰影,外麵包圍著一個明亮的光環。故此也得名黑洞 「陰影」(black hole shadow)。這個陰影有多大呢?史瓦西黑洞的陰影直徑是視界直徑的5.2倍;如果黑洞轉得快,陰影直徑也有約4.6倍視界半徑。如此看來,黑洞視邊界的尺寸主要與黑洞質量有關系,而與黑洞的自轉關系不大。

後來,更多科學家針對黑洞成像開展了大量的研究,均預言黑洞陰影的存在。因此,對黑洞陰影的成像能夠提供黑洞存在的直接「視覺」證據。

今天只是起點,未來將看到更多精彩

其實,人類關於黑洞的理論預言出現的時間不短,VLBI技術也並不是近十年才成熟。為什麼現在才「拍」到第一張黑洞照片呢?一個重要的原因是,想要利用VLBI技術構成一個等效口徑足夠大、靈敏度足夠高的望遠鏡,需要在全球各地廣泛地分布著足夠多的這類望遠鏡。過去十年中,技術的突破、新射電望遠鏡的不斷建成並加入EHT項目、演算法的創新等,終於讓天文學家們打開了一扇關於黑洞和黑洞視界研究的全新窗口。

參與此次EHT觀測的上海天文台專家一致表示,對M87*黑洞的順利成像絕不是EHT的終點站。

一方面,對於M87*的觀測結果分析還能更加深入,從而獲得黑洞周圍的磁場性質,對理解黑洞周圍的物質吸積及噴流形成至關重要。

另一方面,大家翹首以待的銀河系中心黑洞Sgr A*的照片也要出爐了。

EHT項目本身還將繼續「升級」,還會有更多的觀測台站加入EHT,靈敏度和數據質量都將提升,讓我們一起期待,未來看到M87*和Sgr A*的更高清照片,發現照片背後的黑洞奧秘。

總之,人類既然已經拍到第一張黑洞照片,那黑洞成像的春天還會遠嗎?

❹ 做su時突然出現su內存不足是什麼原因

su建模需要大量的內存,更多的線條和平面佔用更多的內存。

建議:

1、雙倍的原始內存,如4G內存加4G,到8G當然越大越好,

2.刪除模型中一些不必要的線條和平面欄位,如看不見的樓板、牆壁、多餘的道路、多餘的線條等。

3、看看是否有隱藏的東西要刪除或把一些暫時不用的地方隱藏起來。

擴展信息:

su導入lumion注意事項:

1.當su建模時,我們應該注意創建新材料,然後改變材料。也就是說,每個事物的物質應該是獨立的。

2.首先應該設置水池的底部,然後設置水池的底部,再設置水面。

3、自定義材質與標准材質,然後SU材質與凹凸貼圖可以在PS中浮雕→反→增加對比度完成。

4.如果草地的紋理要與環境匹配,請選擇environment選項。

5、lumion3,0,1在著色玻璃上有一個缺陷。

6.su導入到lumion的材料必須是英文的,不是中文的,並且可以從材料→選擇→模型中查看。

7.在su中,地形必須導入到lumion中,然後使用環境地圖與環境進行整合(高低位置使用lumion工具)。

8.在lumion中,行種植或布局復制所需的樹的數量,然後選擇→選擇所有相同的類型→轉換→對齊→復制→樹到其他地方→轉換→空間。

9.Lumion可以導出整個場景,然後轉到另一台電腦來製作動畫。

10.Lumion層。對於su中導入的模型,最好分別導入建築/草圖/人物。

❺ su模型導出dae格式時同時出來一個全是圖片的文件夾,再導入lumion時都變成了白色,怎麼辦

su導出需要注意幾點:

1.在導出三維模型面板時,在選項里需要勾選這些

2.文件要導出在桌面上,並且命名時要注意不要出現中文。

可以對照檢查一下看看

❻ 數碼相機里的SD卡無法顯示怎麼辦

第一種情況:還能拍新照片。你應該沒有在電腦上格式化SD卡,大概只是用圖片編輯軟體處理了圖片、改了名。如果你是處理了圖片,那麼不好意思,目前所有的相機都不能識別了。如果你只是為圖片改了名,那還好,可以通過拍一張新圖片,推測出原圖片的名字。比如新圖片是DSCN00095,那麼舊的可能是DSCN00094、DSCN00093和之前的一些編號。但也不一定能全部恢復,一般要猜對才行。但你沒提供你相機的型號,卡型號是沒用的,別人無法猜(有說是P0000001~P9999999,有說是LUMI0000001~LUMI9999999的)。有時即使是你全改對了,也不一定能讀得了。
第二種情況:你改了上面的一些卡上相機必須的系統文件(也就是隱藏的)或存照片的文件夾名。相機已經讀不出卡來了,也無法拍照片。最好的辦法有兩個,一個是借用一張新卡放到你相機里去格式化一下,再打開電腦中的工具——文件夾選項——查看——在「顯示系統文件夾內容」「顯示所有文件或文件夾」前打上點,「隱藏受保護的操作系統文件」前不打點——確定。一般就可顯示出那些隱藏的系統文件了。照著改就好了。
另一個辦法就是大家都說的格式化了。
第三情況:相機或者SD卡的介面處已經壞了,這種可能性很少,但也不能排除。你可對照用替換法檢查一下。

❼ 平行宇宙是怎麼一回事

1 平行宇宙
是否有另一個你正在閱讀和本文完全一樣的一篇文章?那個傢伙並非你自己,卻生活在一個有著雲霧繚繞的高山、一望無際的原野、喧囂嘈雜的城市,和其它8顆行星一同圍繞一顆恆星旋轉,並且也叫做「地球」的行星上?他(她)一生的經歷和你每秒鍾都相同。然而也許她此刻正准備放下這篇文章而你卻打算看下去。

這種「分身」的想法聽起來奇怪而又難以置信,但似乎我們不得不接受它,因為它已為各種天文觀測的結果所支持。如今最流行同時也最簡單的宇宙模型指出,離我們大約10^(10^28)米外之處存在一個和我們的銀河一摸一樣的星系,而那其中正有個一摸一樣的你。雖然這距離大得超乎人們的想像,卻毫不影響你的「分身」存在的真實性。該想法最初起源於很簡單的「自然可能性」而非現代物理所假設:宇宙在尺寸上無限大(或者至少足夠大),並且象天文觀測指出的那樣--均勻的分布著物質。既然如此,按照統計學規律便可以斷定,所有的事件(無論多麼相似或者相同)都會發生無數次:會有無數個孕育人類的星球,它們之中會有和你一摸一樣的人--一摸一樣的長相、名字、記憶甚至和你一摸一樣的動作、選擇--這樣的人還不止一個,確切的說,是無窮多個。

2.泡沫理論

「泡沫狀態」這個詞,隨便一點說,就是一種或一系列資產在一個連續過程中陡然漲價,開始的價格上升會使人們產生出還要漲價的預期,於是又吸引了新的買主——這些人一般只是想通過買賣牟取利潤,而對這些資產本身的使用和產生盈利的能力是不感興趣的。隨著漲價常常是預期的逆轉,接著就是價格的暴跌,最後以金融危機告終。通常,「繁榮(Boom)」的時間要比泡沫狀態長些,價格、生產和利潤的上升也比較溫和一些,以後也許接著就是以暴跌(或恐慌)的形式出現危機,或者以繁榮逐漸消退告終而不發生危機。

金德爾博格對泡沫的定義比較形象,但是在理論研究中比較難以操作。現代的經濟學研究通常將泡沫定義為資產價格對其基本價值的持續性偏離。這樣的定義簡化了對泡沫的判斷,所需要做的工作有兩點,一是決定資產的基本價值,二是看資產價格的偏離是持續性的還是在很短的時間內就消失。

P.S.
[科普] 平行宇宙(全文完) (更新中)

原作:(美)馬克斯·鐵馬克
原載:《科學美國人》 2003.5
翻譯:focus

平行宇宙

是否有另一個你正在閱讀和本文完全一樣的一篇文章?那個傢伙並非你自己,卻生活在一個有著雲霧繚繞的高山、一望無際的原野、喧囂嘈雜的城市,和其它8顆行星一同圍繞一顆恆星旋轉,並且也叫做「地球」的行星上?他(她)一生的經歷和你每秒鍾都相同。然而也許她此刻正准備放下這篇文章而你卻打算看下去。

這種「分身」的想法聽起來奇怪而又難以置信,但似乎我們不得不接受它,因為它已為各種天文觀測的結果所支持。如今最流行同時也最簡單的宇宙模型指出,離我們大約10^(10^28)米外之處存在一個和我們的銀河一摸一樣的星系,而那其中正有個一摸一樣的你。雖然這距離大得超乎人們的想像,卻毫不影響你的「分身」存在的真實性。該想法最初起源於很簡單的「自然可能性」而非現代物理所假設:宇宙在尺寸上無限大(或者至少足夠大),並且象天文觀測指出的那樣--均勻的分布著物質。既然如此,按照統計學規律便可以斷定,所有的事件(無論多麼相似或者相同)都會發生無數次:會有無數個孕育人類的星球,它們之中會有和你一摸一樣的人--一摸一樣的長相、名字、記憶甚至和你一摸一樣的動作、選擇--這樣的人還不止一個,確切的說,是無窮多個。

最新的宇宙學觀測表明,平行宇宙的概念
並非一種比喻。空間似乎是無限的。如果真是這樣,
一切可能會發生的事情必然會發生,不管這些事有
多荒唐。在比我們天文觀測能企及范圍遠得多的地
方,有和我們一摸一樣的宇宙。天文學家甚至計算
出它們距地球的平均距離

你很可能永遠見不到你的「影子」們。你能觀測到的最遠距離也就是自大爆炸以來光所行進的最遠距離:大約140億光年,即4X10^26米--該距離為半徑的球體正好定義了我們可觀測視界的大小,或者簡單地說,宇宙的大小,又叫做哈勃體積。同樣的,另一個你所在的宇宙也是個同樣大小的球體。以上便是對「平行宇宙」最直觀的解釋。每個宇宙都是更大的「多重宇宙」的一小部分。

對「宇宙」的如此定義,人們也許會認為這只是種形而上學的方式罷了。然則物理學和形而上學的區別在於該理論是否能通過實驗來測試,而不是它看起來是否怪異或者包含難以察覺的東西。多年來,物理學前沿不斷擴張,吸收融合了許多抽象的(甚至一度是形而上學的)概念,比如球形的地球、看不見的電磁場、時間在高速下流動減慢、量子重疊、空間彎曲、黑洞等等。近幾年來「多重宇宙」的概念也加入了上面的名單,與先前一些經過檢驗的理論,如相對論和量子力學配合起來,並且至少達到了一個經驗主義科學理論的基本標准:作出預言。當然作出的論斷也可能是錯誤的。科學家們迄今討論過多達4種類型獨立的平行宇宙。現在關鍵的已不是多重宇宙是否存在的問題了,而是它們到底有多少個層次。

第一層次:視界之外
所有的平行宇宙組成第一層多重宇宙。--這是爭論最少的一層。所有人都接受這樣一個事實:雖然我們此時此刻看不見另一個自己,但換一個地方或者簡單地在原地等上足夠長的時間以後就能觀察到了。就像觀察海平面以外駛來的船隻--觀察視界之外物體的情形與此類似。隨著光的飛行,可觀察的宇宙半徑每年都擴大一光年,因此只需要坐在那裡等著瞧。當然,你多半等不到另一個宇宙的另一個你發出的光線傳到這里那天,但從理論上講,如果宇宙擴張的理論站得住腳的話,你的後代就有可能用超級望遠鏡看到它們。

怎麼樣,第一層多重宇宙的概念聽起來平平無奇?空間不都是無限的么?誰能想像某處插著塊牌子,上書「空間到此結束,當心下面的溝」?如果是這樣,每個人都會本能的置疑:盡頭的「外面」是什麼?實際上,愛因斯坦的重力場理論偏偏把我們的直覺變成了問題。空間有可能不是無限,只要它具有某種程度的彎曲或者並非我們直覺中的拓撲結構(即具有相互聯絡的結構)。

一個球形、炸面圈形或者圓號形的宇宙都可能大小有限,卻無邊界。對宇宙微波背景輻射的觀測可以用來測定這些假設。【見另一篇文章《宇宙是有限的嗎?》by Jean-Pierre Luminet, Glenn D. Starkman and Jeffrey R. Weeks; Scientific American, April 1999】然而,迄今為止的觀察結果似乎背逆了它們。無盡宇宙的模型才和觀測數據符合,外帶強烈的限制條件。

另一種可能是:空間本身無限,但所有物質被限制在我們周圍一個有限區域內--曾經流行的「島狀宇宙」模型。該模型不同之處在於,在大尺度下物質分布會呈現分形圖案,而且會不斷耗散怠盡。這種情形下,第一層多重宇宙里的幾乎每個宇宙最終都將變得空空如也,陷入死寂。但是近期關於三維銀河分布與微波背景的觀測指出物質的組織方式在大尺度上呈現出某種模糊的均勻,在大於10^24米的尺度上便觀測不到清晰的細節了。假定這種模式延伸下去,我們可觀測宇宙以外的空間也將充滿行星、恆星和星系。

有資料支持空間延伸於可觀測宇宙之外的理論。WMAP衛星最近測量了微波背景輻射的波動(左圖)。最強烈的振幅超過了0.5開,暗示著空間非常之大,甚至可能無窮(中圖)。另外,WMAP和2dF星系紅移探測器發現在非常大的尺度下,空間均勻分布著物質

生活在第一層多重宇宙不同平行宇宙中的觀察者們將察覺到與我們相同的物理定律,但初始條件有所不同。根據當前理論,大爆炸早期的一瞬間物質按一定的隨機度被拋出,此過程包含了物質分布的一切可能性,每種可能性都不為0。宇宙學家們假定我們所在的當初有著近似均勻物質分布和初始波動狀態(100,000可能性中的一種)的宇宙,是一個相當典型的(至少在所有產生了觀察者的平行宇宙中很典型)個體。那麼距你最近的和你一模一樣那個人將遠在10^(10^28)米之外;而在10^(10^92)米外才會有一個半徑100光年的區域,它裡面的一切與我們居住的空間絲毫不差,也就是說未來100年內我們世界所發生的每件事都會在該區域完全再現;而至少10^(10^118)米之外該區域才會增大到哈勃體積那麼大,換句話說才會有一個和我們一模一樣的宇宙。

上面的估計還算極端保守的,它僅僅窮舉了一個溫度在10^8開以下、大小為一個哈勃體積的空間的所有量子狀態。其中一個計算步驟是這樣:在那溫度下一個哈勃體積的空間最多能容納多少質子?答案是10^118個。每個質子可能存在,也可能不存在,也就是總共2^(10^118)個可能的狀態。現在只需要一個能裝下2^(10^118)個哈勃空間的盒子便用光所有可能性。如果盒子更大些--比如邊長10^(10^118)米的盒子--根據抽屜原理,質子的排列方式必然會重復。當然,宇宙不只有質子,也不止兩種量子狀態,但可用與此類似的方法估算出宇宙所能容納的信息總量。

與我們宇宙一摸一樣的另一個宇宙的平均距離

距你最近那個「分身」沒准並不象理論計算的那麼遠,也許要近得多。因為物質的組織方式還要受其他物理規律制約。給定一些諸如行星的形成過程、化學方程式等規律,天文學家們懷疑僅在我們的哈勃體積內就存在至少10^20個有人類居住的行星;其中一些可能和地球十分相像。

第一層多重宇宙的框架通常被用來評估現代宇宙學的理論,雖然該過程很少被清晰地表達。舉例來說,考察我們的宇宙學家如何通過微波背景來試圖得出「球形空間」的宇宙幾何圖。隨著空間曲率半徑的不同,那些「熱區域」和「冷區域」在宇宙微波背景圖上的大小會呈現某種特徵;而觀測到的區域表明曲率太小不足以形成球形的封閉空間。然而,保持統計學上的嚴格是非常重要的事。每個哈勃空間的這些區域的平均大小完全是隨機的。因此有可能是宇宙在愚弄我們--並非空間曲率不足以形成封閉球形使得觀測到的區域偏小,而恰巧因為我們宇宙的平均區域天生就比別的來的小。所以當宇宙學家們信誓旦旦保證他們的球狀空間模型有99.9%可信度的時候,他們的真正意思是我們那個宇宙是如此地不合群,以至1000個哈勃體積之中才會出一個象那樣的。

這堂課的重點是:即使我們沒法觀測其他宇宙,多重宇宙理論依然可以被實踐驗證。關鍵在於預言第一層多重宇宙中各個平行宇宙的共性並指出其概率分布--也就是數學家所謂的「度量」。我們的宇宙應當是那些「出現可能性最大的宇宙」中的一個。否則--我們很不幸地生活在一個不大可能的宇宙中--那麼先前假設的理論就有大麻煩了。如我們接下來要討論的那樣,如何解決這度量上的問題將會變得相當有挑戰性。

第二層多重宇宙示意圖。

第二層次:膨脹後留下的氣泡
如果第一層多重宇宙的概念不太好消化,那麼試著想像下一個擁有無窮組第一層多重宇宙的結構:組與組之間相互獨立,甚至有著互不相同的時空維度和物理常量。這些組構成了第二層多重宇宙--被稱為「無序的持續膨脹」的現代理論預言了它們。

「膨脹」作為大爆炸理論的必然延伸,與該理論的許多其他推論聯系緊密。比如我們的宇宙為何如此之大而又如此的規整,光滑和平坦?答案是「空間經歷了一個快速的拉伸過程」,它不僅能解釋上面的問題,還能闡釋宇宙的許多其他屬性。【見《膨脹的宇宙》 by Alan H. Guth and Paul J. Steinhard; Scientific American, May 1984; 《自我繁殖的膨脹宇宙》 by Andrei Linde, November 1994 】「膨脹」理論不僅為基本粒子的許多理論所語言,而且被許多觀測證實。「無序的持續」指的是在最大尺度上的行為。作為一個整體的空間正在被拉伸並將永遠持續下去。然而某些特定區域卻停止拉神,由此產生了獨立的「氣泡」,好像膨脹的烤麵包內部的氣泡一樣。這種氣泡有無數個。它們每個都是第一層多重宇宙:在尺寸上無限而且充滿因能量場漲落而析出的物質。

對地球來說,另一個氣泡在無限遙遠之外,遠到即使你以光速前進也永遠無法到達。因為地球和「另一個氣泡」之間的那片空間拉伸的速度遠比你行進的速度快。如果另一個氣泡中存在另一個你,即便你的後代也永遠別想觀察到他。基於同樣的原因,即空間在加速擴張,觀察結果令人沮喪的指出:即便是第一層多重空間中的另一個自己也將看不到了。

第二層多重宇宙與第一層的區別非常之大。各個氣泡之間不僅初始條件不同,在表觀面貌上也有天壤之別。當今物理學主流觀點認為諸如時空的維度、基本粒子的特性還有許許多多所謂的物理常量並非基本物理規律的一部分,而僅是一種被稱作「對稱性破壞」過程的結果而已。舉例言之,理論物理學家認為我們的宇宙曾一度由9個相互平等的維度組成。在宇宙早期歷史中,只有其中3個維度參與空間拉神,形成我們現在觀察到的三維宇宙。其餘6個維度現在觀察不到了,因為它們被捲曲在非常微小的尺度中,而且所有的物質都分布在這三個充分拉伸過的維度「表面」上(對9維來說,三維就是一個面而已,或者叫一層「膜」)。

我們生活在3+1維時空之中,對此我們並不特別意外。當描述自然的
偏微分方程是橢圓或者超雙曲線方程時,也就是空間或者時間其中之一是0維或
同時多維,對觀測者來說,宇宙不可能預測(紫色和綠色部分)。
其餘情況下(雙曲線方程),若n>3,原子無法穩定存在,n<3,復雜度太低以
至於無法產生自我意識的觀測者(沒有引力,拓撲結構也成問題)。

由此,我們稱空間的對稱性被破壞了。量子波的不確定性會導致不同的氣泡在膨脹過程中以不同的方式破壞平衡。而結果將會千奇百怪。其中一些可能伸展成4維空間;另一些可能只形成兩代誇克而不是我們熟知的三代;還有些它們的宇宙基本物理常數可能比我們的宇宙大。

產生第二層多重宇宙的另一條路是經歷宇宙從創生到毀滅的完整周期。科學史上,該理論由一位叫Richard C的物理學家於二十世紀30年代提出,最近普林斯頓大學的Paul J. Steinhardt和劍橋大學的Neil Turok兩位科學家對此作了詳盡闡述。Steinhardt和Turok 提出了一個「次級三維膜」的模型,它與我們的空間相當接近,只是在更高維度上有一些平移。【see "Been There, Done That," by George Musser; News Scan, Scientific American, March 2002】該平行宇宙並非真正意義上的獨立宇宙,但宇宙作為一個整體--過去、現在和未來--卻形成了多重宇宙,並且可以證明它包含的多樣性恰似無序膨脹宇宙所包含的。此外,沃特盧的物理學家Lee Smolin還提出了另一種與第二層多重宇宙有著相似多樣性的理論,該理論中宇宙通過黑洞創生和變異而非通過膜物理學。

盡管我們沒法與其他第二層多重宇宙之中的事物相互作用,宇宙學家仍能間接地指出它們的存在。因為他們的存在可以用來很好地解釋我們宇宙的偶然性。做一個類比:設想你走進一座旅館,發現了一個房間門牌號碼是1967,正是你出生那年。多麼巧合呀,在那瞬間你驚嘆到。不過你隨即反應過來,這完全不算什麼巧合。整個旅館有成百上千的房間,其中有一個和你生日相同很正常。然而你若看見的是另一個與你毫無干係的數字,便不會引發上面的思考。這說明什麼問題呢?即便對旅館一無所知,你也可以用上面的方法來解釋很多偶然現象。

讓我們舉個更切題的例子:考察太陽的質量。太陽的質量決定它的光度(即輻射的總量)。通過基本物理運算我們可知只有當太陽的質量在1.6X10^30~2.4X10^30千克這么個狹窄范圍內,地球才可能適合生命居住。否則地球將比金星還熱,或者比火星還冷。而太陽的質量正好是2.0X10^30千克。乍看之下,太陽質量是種驚人的幸運與巧合。絕大多數恆星的質量隨機分布於10^29~10^32千克的巨大范圍內,因此若太陽出生時也隨機決定質量的話,落在合適范圍的機會將微乎其微。然而有了旅館的經驗,我們便明白這種表面的偶然實為大系統中(在這個例子里是許多太陽系)的必然選擇結果(因為我們在這里,所以太陽的質量不得不如此)。這種與觀測者密切相關的選擇稱為「人擇原理」。雖然可想而知它引發過多麼大的爭論,物理學家們還是廣泛接收了這一事實:驗證基礎理論的時候無法忽略這種選擇效應。

適用於旅館房間的原理同樣適用於平行宇宙。有趣的是:我們的宇宙在對稱性被打破的時候,所有的(至少絕大部分)屬性都被「調整」得恰到好處,如果對這些屬性作哪怕極其微小的改變,整個宇宙就會面目全非--沒有任何生物可以存在於其中。如果質子的質量增加0.2%,它們立即衰變成中子,原子也就無法穩定的存在。如果電磁力減小4%,便不會有氫,也就不會有恆星。如果弱相互作用再弱一些,氫同樣無法形成;相反如果它們更強些,那些超新星將無法向星際散播重元素離子。如果宇宙的常數更大一些,它將在形成星系之前就把自己炸得四分五裂。

雖然「宇宙到底被調節得多好」尚無定論,但上面舉的每一個例子都暗示著存在許許多多包含每一種可能的調節狀態的平行宇宙。【see "Exploring Our Universe and Others," by Martin Rees; Scientific American, December 1999】第二層多重宇宙預示著物理學家們不可能測定那些常數的理論值。他們只能計算出期望值的概率分布,在選擇效應納入考慮之後。

第三層次:量子平行世界
第一層和第二層多重宇宙預示的平行世界相隔如此之遙遠,超出了天文學家企及的范圍。但下一層多重宇宙卻就在你我身邊。它直接源於著名的、備受爭議的量子力學解釋--任何隨機量子過程都導致宇宙分裂成多個,每種可能性一個。

量子平行宇宙。當你擲骰子,它看起會隨機得到一個特定的結果。然而量子力學指出,那一瞬間
你實際上擲出了每一個狀態,骰子在不同的宇宙中停在不同的點數。其中一個宇宙里,你擲出了1,另一個
宇宙里你擲出了2……。然而我們僅能看到全部真實的一小部分--其中一個宇宙。

20世紀早些年,量子力學理論在解釋原子層面現象方面的成功掀起了物理學革命。在原子領域下,物質運動不再遵守經典的牛頓力學規律。在量子理論解釋它們取得矚目成功的同時卻引發了爆炸性激烈的爭論。它到底意味著什麼?量子理論指出宇宙並不像經典理論描述的那樣,決定宇宙狀態的是所有粒子的位置和速度,而是一種叫作波函數的數學對象。根據薛定鄂方程,該狀態按照數學家稱之為「統一性」的方式隨時間演化,意味著波函數在一個被稱為「希爾伯特空間」的無窮維度空間中演化。盡管多數時候量子力學被描述成隨機和不確定,波函數本身的演化方式卻是完全確定,沒有絲毫隨機性可言的。

關鍵問題是如何將波函數與我們觀測到的東西聯系起來。許多合理的波函數都導致看似荒謬不合邏輯的狀態,比如那隻在所謂的量子疊加下同時處於死和活兩種狀態的貓。為了解釋這種怪異情形,在20實際20年代,物理學家們做了一種假設:當有人試圖觀察時,波函數立即「坍塌」成經典理論中的某種確定狀態。這個附加假設能夠解決觀測發現的問題,然而卻把原本優雅和諧統一的理論變得七拼八湊,失去統一性。隨機性的本質通常歸咎於量子力學本身就是這些不順眼假設的結果。

許多年過去了,物理學家們逐漸拋棄了這種假設,轉而開始接受普林斯頓大學畢業生Hugh Everett在1957年提出的一種觀點。他指出「波函數坍塌」的假設完全是多餘的。純粹的量子理論實際上並不產生任何矛盾。它預示著這樣一種情形:一個現實狀態會逐漸分裂成許多重疊的現實狀態,觀測者在分裂過程中的主觀體驗僅僅是經歷完成了一個可能性恰好等於以前「波函數坍塌假設結果」的輕微的隨機事件。這種重疊的傳統世界就是第三層多重宇宙。

四十多年來,物理界為是否接受Everett的平行世界猶豫不決,數度反復。但如果我們將之區分成不同視點分別來看待,就會更容易理解。研究它數學方程的物理學家們站在外部的視點,好像飛在空中的鳥審視地面;而生活在方程所描述世界裡的觀測者則站在內部的視點,就好比被鳥俯瞰的一隻青蛙。

在鳥看來,整個第三層多重宇宙非常簡單。只用一個平滑演化的、確定的波函數就能就能描繪它而不引發任何分裂或平行。被這個演化的波函數描繪的抽象量子世界內部卻包含了大量平行的經典世界。它們一刻不停的分裂、合並,如同經典理論無法描述的一堆量子現象。在青蛙看來,觀察者感知的只有全部真相的一小部分。它們能觀測到自己所在那個第一層宇宙,但是一種模仿波函數坍塌效果而又保留統一性、被稱為「去相干」的作用卻阻礙他們觀測到與之平行的其他宇宙。

每當觀測者被問及一個問題、做一個決定或是回答一個問題,他大腦里的量子作用就導致復合的結果,諸如「繼續讀這篇文章」和「放棄閱讀本文」。在鳥看來,「作出決定」這個行為導致該人分裂成兩個,一個繼續讀文章而另一個做別的去了。而在青蛙看來,該人的兩個分身都沒有意識到彼此的存在,它們對剛才分裂的感知僅僅是經歷了個輕微的隨機事件。他們只知道「自己」做了什麼決定,而不知道同時還有一個「他」做了不同的決定。

盡管聽起來很奇怪,這種事情同樣發生在前面講過的第一層多重宇宙中。顯然,你剛作出了「繼續閱讀本文」的決定,然而在很遠很遠的另一個銀河系中的另一個你在讀過第一段之後就放下了雜志。第一層宇宙和第三層宇宙唯一的區別就是「另一個你」身處何處。第一層宇宙中,他位於距你很遠之處--通常維度空間概念上的「遠」。第三層宇宙中,你的分身住在另一個量子分支中,被一個維度無限的希爾伯特空間分隔開來。

第三層多重宇宙的存在基於一個至關重要的假設:波函數隨時間演化的統一。所幸迄今為止的實驗都不曾與統一性假設背離。在過去幾十年裡我們在各種更大的系統中證實了統一性的存在:包括碳-60布基球和長達數公里的光纖中。理論反面,統一性也被「去相干」作用的發現所支持。【see "100 Years of Quantum Mysteries," by Max Tegmark and John Archibald Wheeler; Scientific American, February 2001】只有一些量子引力方面的理論物理學家對統一性提出置疑,其中一個觀點是蒸發中的黑洞有可能破壞統一性,應該是個非統一性過程。但最近一項被叫做「AdS/CFT一致」的弦理論方面的研究成果暗示:量子引力領域也具有統一性,黑洞並不抹消信息,而是把它們傳送到了別處。
.
如果物理學是統一的,那麼大爆炸早期量子波動是如何運作的那幅標准圖畫將不得不改寫。它們並非隨機產生某個初始條件,而是產生重疊在一起的所有可能的初始條件,同時存在。然後,「去相干」作用保證它們在各自的量子分支里像傳統理論那樣演化下去。這就是關鍵之處:一個哈勃體積內不同量子分支(即第三層多重宇宙)演化出的分布結果與不同哈勃體積內同一個量子分支(即第一層多重宇宙)演化出的分布結果是毫無區別的。量子波動的該性質在統計力學中被稱為「遍歷性」。

同樣的原理也可以適用在第二層多重宇宙。破壞對稱性的過程並不只產生一個獨一無二的結果,而是所有可能結果的疊加。這些結果之後按自己的方向發展。因此如果在第三層多重宇宙的量子分支中物理常數、時空維度等各不相同的話,那些第二層平行宇宙同樣也將各不相同。

換句話說,第三層多重宇宙並沒有在第一層和第二層上增加任何新東西,只是它們更加難以區分的復製品罷了--同樣的老故事在不同量子分支的平行宇宙間一遍遍上演。對Everett理論一度激烈的懷疑便在大家發現它和其他爭議較少的理論實質相同之後銷聲匿跡了。

第三層和第一層區別的示意圖

毫無疑問,這種聯系是相當深層次的,物理學家們的研究也才處於剛剛起步階段。例如,考察那個長久以來的問題:隨著時間流逝,宇宙的數目會以指數方式暴漲嗎?答案是令人驚訝的「不」。在鳥看來,全部世界就是由單個波函數描述的東西;在青蛙看來,宇宙個數不會超過特定時刻所有可區別狀態的總數--也即是包含不同狀態的哈勃體積的總數。諸如行星運動到新位置、和某人結婚或是別的什麼,這些都是新狀態。在10^8開溫度以下,這些量子狀態的總數大約是10^(10^118)個,即最多這么多個平行宇宙。這是個龐大的數目,卻很有限。

從青蛙的視點看,波函數的演化相當於從這10^(10^118)個宇宙中的一個跳到另一個。現在你正處在宇宙A--此時此刻你正在讀這句話的宇宙里。現在你跳到宇宙B--你正在閱讀另一句話那個宇宙里。宇宙B存在一個與宇宙A一摸一樣的觀測者,僅多了幾秒中額外記憶。全部可能狀態存在於每一個瞬間。因此「時間流逝」很可能就是這些狀態之間的轉換過程--最初在Greg Egan在1994所著的科幻小說[Permutation City]中提出的想法,而後被牛津大學的物理學家David Deutsch和自由物理學家Julian Barbour等人發展開來。

第四層次:其他數學界構
雖然在第一、第二和第三層多重宇宙中初始條件、物理常數可能各不相同,但支配自然的基礎法則是相同的。為什麼要到此為止?為何不讓這些基礎法則也多樣化?來個只遵守經典物理定律,讓量子效應見鬼去的宇宙如何?想像一個時間像計算機一樣一段一段離散地流逝,而非現在那樣連續地流逝的宇宙?再想像一個簡單的空心十二面體宇宙?在第四層多重宇宙里,所有這些形態都存在。

平行宇宙的終極分類,第四層。包含了所有可能的宇宙。

❽ lumion怎麼出剖面圖

lumion出剖面圖的步驟:

1、使用Lumion,打開渲染模型文件。

2、右下角菜單中,點擊【相機】標志。

3、進入渲染頁面,右上角瀏覽窗口,選擇合適角度,點擊【拍照】保留圖片。

4、左上角選擇渲染模式,添加剖面圖。

lumion使用技巧:

Lumion開啟後,會進入到Lumion的起始頁面,在起始頁面的上方,為語言選擇,點擊即可進入到語言設置頁面。Lumion默認語言為英語,我們可以通過對應的「國旗」選擇我們需要使用的語言。確定語言之後我們即可進行Lumion場景的選擇,在起始頁面中,Lumion系統自帶有很多的場景可以選擇,每一種都各具特點,最後一種為「白色場景」,適合後期PS大規模處理。

❾ 跪求nokia lumia925怎麼連接電腦

Hi!Lumi925手機與電腦連接需要滿足以下條件:
1.如電腦的操作系統是Mac,需要在電腦上安裝Windows Phone App for Mac軟體(下載網址:http://www.windowsphone.com/zh-CN/how-to/wp8/windows-phone-app-for-mac)。
2.如電腦的操作系統是Windows XP,則安裝最新的 Microsoft Windows XP Service Pack 3(下載網址:http://www.microsoft.com/zh-cn/download/details.aspx?id=24) 。和最新的 Microsoft Windows Media Player 11(下載網址:http://www.microsoft.com/zh-cn/download/details.aspx?id=8163)。
3.如電腦是Windows7和Windows8操作系統,可以直接通過原裝數據線連接作為大容量存儲使用。
如符合以上條件仍無法連接電腦,請通過以下方法安裝電腦驅動程序:
1.訪問 Microsoft Update 下載目錄頁 (鏈接僅可以在 IE 中運行) http://catalog.update.microsoft.com/v7/site/home.aspx。搜索「Windows Phone WinUSB」;
2.將驅動程序添加到下載欄,然後按視圖欄進行結賬。 將文件下載到電腦上。使用 Winzip 提取所下載的 .cab 文件;
3.在設備管理器中,單擊「更新驅動程序軟體」-「瀏覽計算機以查找驅動程序軟體」,搜索將文件提取到的目錄,然後單擊「下一步」。「RM-xxx|Nokia Lumia xxx」將替換為「Windows Phone WinUSB」。